

Demonstrating the Working Principle of Flash LiDAR

Abstract

Nowadays, LiDAR technology has been applied in not only the professional areas but also in the consumer products. As an example, the flash LiDAR is found of great use in the smart devices because of their capability of fast and accurate 3D distance detection and measurement. In this example, we demonstrate the working principle of a typical flash LiDAR, which is composed of an array of sources, collimation lens system, and diffractive grating as beam splitter. Analysis is done in both the spatial and the spatial frequency domains.

Modeling Task

Modeling Task

Single Source + Collimation Lens

Single Source + Collimation Lens

Source Array + Collimation Lens

Source Array + Collimation Lens + Diffractive Grating

Source Array + Collimation Lens + Diffractive Grating

Note on Simulation Settings

- Modeling array of source
 - The optical setup contains only one Gaussian source, and the array of sources is realized by using a programmable Parameter Run.
 - In the Parameter Run, a grid is defined and each time the Gaussian source is laterally shifted onto a grid point.

- Visualization in k domain
 - The electromagnetic field detector has the option of showing the field in the k domain i.e. the spatial frequency domain as single document.
 - To combine all the results and display to display them in a common window, a VirtualLab Module is designed and provided along with this example. (Appx - Module for Combining EM Fields.cs)

Peek into VirtualLab Fusion

programmable Parameter Run for source array modeling

rameter Specification				
et up a snippet which genera	ates a two dimensional array, whi	ch is used as parameter s	et for the Parameter Run.	
Definition				
/ Edit Validity: 🕑				
Parameters				
NumberGridPoints			6 🜩	8 🜩
ArrayShift			15 µm	27.5 μm
Pitch			60 µm	55 µm
GridAngle	Snippet Help			— D
ShowGrid	Last Modified: Wed	dnesday, November 4, 2	2020	
	PARAMETER		DESCRIPTION	
	NumberGridPoint	s Specifies the number	r of grid points.	
	Array Shift	Defines a lateral shift of the array		
	Pitch	Defines the pitch between the grid nodes.		
	GridAngle	Defines the angle between the grid notes (90°> rectangular Grid; 60°> Hexagonal Grid)		

easy-to-use detectors for result visualization

Workflow in VirtualLab Fusion

- Source array modeling via Parameter Run
 - Application of the Programmable Mode of a Parameter Run [Use Case]
- Set the Fourier transforms properly
 - Fourier Transform Settings Discussion at Examples [Use Case]
- Set the functional grating component
 - <u>VirtualLab Fusion Technology</u> <u>Idealized Grating Functions</u> [Technology White Paper]

3: E:\OneDrive\\LiDAR Principle_02b_All Source So	an + Lens + Grating.run		
Parameter Specification			
Set up a snippet which generates a two dimensional arra	y, which is used as parameter set for the Pa	arameter Run.	
Definition			
/ Edit Validity: 🕑			
Parameters			
NumberGridPoints		6 🜩	8 🜩
ArrayShift		15 µm	27.5 µm
Pitch		60 µm	55 µm
GridAngle			60°
ShowGrid			

VirtualLab Fusion Technologies

title	Demonstrating the Working Principle of Flash LiDAR	
document code	MISC.0087	
version	1.0	
edition	VirtualLab Fusion Basic	
software version	2020.1 (Build 3.4)	
category	Application Use Case	
further reading	 Working Principle Demonstration of the Dot Projector with Physical Optics Modeling Design of 2D Non-Paraxial Beam-Splitting Metagrating Design of a High-NA Beam Splitter with 24000 Dots Random Pattern 	