

Tight Focusing of Variously Polarized Beams by an Idealized Aplanatic Lens

Abstract

Knowing the vectorial electric field distribution near the focus of a high-NA objective lens is of great importance for applications e.g. microscopy, optical tweezer, laser machining, etc. The used high-NA objective lens is often assumed as an aplanatic lens (means spherical aberration and coma are neglected). We demonstrate the focusing of variously polarized beams, e.g. linearly, circularly and radially polarized beams, by an idealized aplanatic lens in VirtualLab Fusion. Further, the focal field with respect to different shapes of apertures, e.g. circular and annular, is investigated.

Modeling Task

Multiple Light Source – Radially Polarized Light

In order to model radially polarized light, it is required to combine two different source modes. This can be done by using the *Multiple Light Source*, which enables the combination of e.g. two Gaussian waves with different modes and polarization states. More information under:

Simulation of Multiple light Source with VirtualLab Fusion

Gaussian Wave (L	inear Polarizatio	n)			×
Basic Parameters	Spectral	Parameters	c	natial Parameters	
Polarization	Mode Selection	n Samoli	ina -	Pay Selection	
	mode Selection	n Sumpn	ing	Ruy Sciection	
🗖 Global Polariza	tion	O Local Pola	arizat	ion	
- Polarization Innu	rt.	Orbotanion		1011	
T of an 2 at 1 of a 1 of a					
Type of Polariz	ation Linearly	Polarized		~	
	Circularly	v Polarized			
Angle	Elliptical	ly Polarized			
	General	inpactio solic:			
Gaussian Wave					\times
Gaussian Wave					×
Gaussian Wave Polarization	Mode Selectio	n Sampli	ing	Ray Selection	×
Gaussian Wave Polarization Basic Parameters	Mode Selection	n Sampli Parameters	ing S	Ray Selection patial Parameters	×
Gaussian Wave Polarization Basic Parameters	Mode Selectio Spectral	n Sampli Parameters	ing S	Ray Selection patial Parameters	×
Gaussian Wave Polarization Basic Parameters Generate Cross	Mode Selection Spectral	n Sampli Parameters	ing S	Ray Selection patial Parameters	×
Gaussian Wave Polarization Basic Parameters Generate Cross	Mode Selection Spectral	n Sampli Parameters	ing S	Ray Selection patial Parameters	×
Gaussian Wave Polarization Basic Parameters Generate Cross	Mode Selection Spectral Section	n Sampli Parameters ite Gaussian M	ing S 10de	Ray Selection patial Parameters	×
Gaussian Wave Polarization Basic Parameters Generate Cross Order	Mode Selection Spectral Section	n Sampli Parameters ite Gaussian M	ing S 10de	Ray Selection patial Parameters	×
Gaussian Wave Polarization Basic Parameters Generate Cross Order	Mode Selectio Spectral Section	n Sampli Parameters ite Gaussian M	ing S 1ode	Ray Selection patial Parameters	×
Gaussian Wave Polarization Basic Parameters Generate Cross Order M^2 Parameter	Mode Selection Section Herm	n Sampli Parameters ite Gaussian M 1 3	ing S 1ode	Ray Selection patial Parameters ~ 0 1	×
Gaussian Wave Polarization Basic Parameters Generate Cross Order M^2 Parameter	Mode Selection Section Herm	n Sampli Parameters ite Gaussian M 1 3	ing S 1ode	Ray Selection patial Parameters	×
Gaussian Wave Polarization Basic Parameters Generate Cross Order M^2 Parameter Reference Wavele	Mode Selection Section Herm	n Sampli Parameters ite Gaussian M 1 3	ing S 1ode	Ray Selection patial Parameters	×
Gaussian Wave Polarization Basic Parameters Generate Cross Order M^2 Parameter Reference Wavele	Mode Selection Section Herm	n Sampli Parameters ite Gaussian M 1 3	ing S 10de	Ray Selection patial Parameters	×
Gaussian Wave Polarization Basic Parameters Generate Cross Order M^2 Parameter Reference Wavele Select Achromatic	Mode Selection Section Herm	n Sampli Parameters ite Gaussian M 1 3	ing S 10de	Ray Selection patial Parameters 0 1 532.8 nm ~	×
Gaussian Wave Polarization Basic Parameters Generate Cross Order M^2 Parameter Reference Wavele Select Achromatic Waist Radius (Mode Selection Section Herm ength (Vacuum) c Parameter: 1/e^2) 32.1	n Sampli Parameters ite Gaussian M 1 3	ing S 10de (Ray Selection patial Parameters	×
Gaussian Wave Polarization Basic Parameters Generate Cross Order M^2 Parameter Reference Wavele Select Achromatic Waist Radius (Mode Selection Section Herm ength (Vacuum) c Parameter: 1/e^2) 32.5	n Sampli Parameters ite Gaussian M 1 3 56176883 mm	ing S 10de	Ray Selection patial Parameters	×
Gaussian Wave Polarization Basic Parameters Generate Cross Order M^2 Parameter Reference Wavele Select Achromatic Waist Radius (Half-Angle Div (1(402))	Mode Selection Section Herm ength (Vacuum) c Parameter: (1/e^2) 32.3 vergence 0.000	n Sampli Parameters ite Gaussian M 1 3 56176883 mm 1063291877°	ing S 10de (Ray Selection patial Parameters 0 1 532.8 nm ~ 18.799546 mm 0.0006138918515°	×
Gaussian Wave Polarization Basic Parameters Generate Cross Order M^2 Parameter Reference Wavele Select Achromatic Waist Radius (Half-Angle Div (1/e^2)	Mode Selection Section Herm ength (Vacuum) Parameter: (1/e^2) 32.1 vergence 0.00	n Sampli Parameters ite Gaussian M 1 3 56176883 mm 01063291877°	10de	Ray Selection patial Parameters	×

Idealized Aplanatic Lens

Summary – Components...

of Optical System	in VirtualLab Fusion	Model/Solver/Detected Magnitude
1. source	Gaussian Wave / Multiple Source with Gaussian Waves	Hermite Gaussian modes
2. aperture	Aperture / Stop	transmission function
3. idealized aplanatic lens	Idealized Lens (Focusing Mode)	transmission function
4. detector	Camera DetectorElectromagnetic Field Detector	energy density measurementfield component measurement

Circular vs. Annular Aperture: Linearly Polarized Input

Circular vs. Annular Aperture: Circularly Polarized Input

Circular vs. Annular Aperture: Radially Polarized Input

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

X [µm]

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

X [µm]

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

X [µm]

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

X [µm]

VirtualLab Fusion Technologies

title	Tight Focusing of Variously Polarized Beams by an Idealized Aplanatic Lens
document code	MIC.0005
document version	1.1
software edition	VirtualLab Fusion Basic
software version	2021.1 (Build 1.180)
category	Application Use Case
further reading	 <u>Analyzing High-NA Objective Lens Focusing</u> <u>Investigation of Idealized Vectorial Focusing Situation Using Debye-Wolf Integral</u> <u>Simulation of Multiple light Source with VirtualLab Fusion</u> <u>Idealized Lens Functions</u>