

Coherence Measurement Using Michelson Interferometer and Fourier Transform Spectroscopy

Abstract

It is known that, in an interferometer, the fringe contrast may depend on the coherence of the light source. For example, in a Michelson interferometer with a source of a certain bandwidth, the interference fringe contrast decreases as the optical path difference between the two arms increases. By measuring the interferogram contrast at different positions of the movable mirror, the coherence length of the source can be concluded. Typical Fourier-transform spectroscopy is usually based on optical setups of this kind.

Modeling Task

Non-Sequential Tracing

With the channel configuration mode toggle set to *Manual Configuration*, the user can specify, for each surface in the system, which channels to open for the simulation. When the simulation is run, a preliminary analysis of the active light paths will be performed (by the so-called *Light Path Finder*). The field will then be traced along these light paths by the engine, to the detectors present in the system.

Detector Add-On

The Universal Detector allows the evaluation of the impinging field and the calculation of various physical quantities through so-called Add-Ons. In this Use Case specifically we calculate the Irradiance of the entire pattern. We then measure the Radiant Flux in a small region around the center to visualize the bandwidth dependency. For more information, see:

Universal Detector

Parameter Run

The actual coherence measurement is performed by varying the position of the tilted mirror. Such a variation of parameters can be achieved by a *Parameter Run.*

ame	ter Specifica	abon							
up t	ne paramete	r(s) to be var	ried.						
ı can	select one o	r more para	meters which shall be	varied as	s well as the resu	Iting number o	fiteration	s. Several mode	s are available
cifyir	ng how the p	oarameters a	re varied per iteration	n.		-			-
ige N	lode Stan	dard	~						
ilter by Show Only Varied Parame							ly Varied Parame		
									, , ranca raname
2 *	Object	Category	Parameter	Vary	From	То	Steps	Step Size	Original Value
		Basal Po	Rotation #1 (abou		-360°	360°	1	720°	0°
-		Basal Positionin g (Absol	X		-1E+297 km	1E+297 km	1	2E+297 km	0 mm
			Y		-1E+297 km	1E+297 km	1	2E+297 km	0 mm
			Z		-1E+297 km	1E+297 km	1	2E+297 km	40 mm
-		Isolated Positionin g	Translation Delta X		-1E+297 km	1E+297 km	1	2E+297 km	0 mm
			Translation Delta Y		-1E+297 km	1E+297 km	1	2E+297 km	0 mm
	"Movable		Translation Delta Z	\sim	-3 µm	3 µm	121	50 nm	1 µm
	Mirror" (# 2)		Rotation #1 (abou		-360°	360°	1	720°	0.05°
ę.		Free Space Propagati on (Profile Physical Optics)	Initial Number of		3	2E+09	1	2E+09	1100
			Control Factor of		0.1	100	1	99.9	1
			Accuracy Nyquist		-4	4	1	8	0
			Oversampling Fact		1E-300	1E+300	1	1E+300	1
			PFT Selection Acc		-2.1475E+09	2.1475E+09	1	4.295E+09	0
			Sampling Limit to		11	2E+09	1	2E+09	5792
1.1			Threshold for Sem		1E-300	1E+300	1	1E+300	2

Summary – Components...

of Optical System	in VirtualLab Fusion	Model/Solver/Detected Value
1. Source	Gaussian Wave	spatial Gaussian formula
2. Beam Splitter	Ideal Beam Splitter	transmission function
3. Mirror	Ideal Mirror	Local Plane Interface Approximation
6. Detector	Universal Detector	Irradiance/radiant flux

Lateral Interference Fringes – 50nm Bandwidth

shift

distance d

fundamental Gaussian (central wavelength 635nm) a) bandwidth 50nm The interference pattern is only visible when the two arms are the same length, with the contrast of the fringes decreasing as the path difference increases. The region where the fringes remain visible represents the *coherence length*. The asymmetry is caused by the mirror tilt.

Lateral Interference Fringes – 100nm Bandwidth

(central wavelength 635nm) b) bandwidth: 100nm

Radiant Flux Measurements of the On-Axis Point

When measuring the radiant flux on axis the coherence length can be directly visualized. It is quite clear that it is inversely proportional to the bandwidth of the incoming light.

VirtualLab Fusion Technologies

title	Coherence Measurement and Fourier Transform Spectroscopy
document code	IFO.0002
version	1.1
edition	VirtualLab Fusion Basic
software version	2023.1 (Build 1.556)
category	Application Use Case
further reading	 Laser-Based Michelson Interferometer and Interference Fringe Exploration Mach-Zehnder Interferometer Fizeau Interferometer for Optical Testing