

Talbot Images of A Conical Phase Mask

Abstract

In conventional Talbot lithography, only one image is employed in the photoactive layer. However, it is possible to produce two images of the phase mask in a depthwise manner using a special phase mask. In this example, following the work of I.-H. Lee *et al.*, a phase mask with a layer of cones is modeled in VirtualLab Fusion with the Fourier modal method (FMM, also known as RCWA). Different Talbot images are detected, such that the pillar pattern is reproduced in the primary image plane, while the hole pattern in the secondary.

Modeling Task

structure and material parameters from I.-H. Lee, et al., Opt. Express 23, 25866-25873 (2015)

System Building Blocks

phase mask structure

- period $\Lambda_x = 500 \text{ nm},$ $\Lambda_y = 500\sqrt{3} \text{ nm}$
- cóne diameter D=300 nm
- cone height h=300 nm

The phase mask is modeled with the 2D grating component in a gratingspecific optical setup, using a *Pillar Medium* sandwiched between the embedding medium and the photoresist.

								👗 Base Block
Т	Index	z-Distance	z-Position	Surface	Subseque	nt Medium		Com
T	1	0 mm	0 mm	Plane Interface	photoresis	t(365nm)	Enter your	commen
	2	120 nm	120 nm	Plane Interface	Pillar Med	ium (Genera	Enter your	commen
	3	300 nm	420 nm	Plane Interface	Non-Dispe	rsive Mater	Enter your	commen
								>
al	idity: 🔇				Add	Insert	De	elete
e	riodici	ty & Apertur	e					
0) Peri	odic 🔾	Non-Periodi	c				
S	tack Pe	eriod is D	ependent fro	m the Period of Me	dium 🗸	with Index	2	* *
<	tack Pe	eriod	5	00 nm ×	866.0254 nm			

dit Pillar Medium (General)		×					
Basic Parameters Scaling Pe	eriodization						
Embedding Material							
Name Non-Dispersive Ma	aterial (n=1.41)	Q					
Defined by Constant Refra	Defined by Constant Refractive Index						
State of Matter	Solid	~					
Pillar Material Name Non-Dispersive Material (n= 1) Optimed by Constant Refractive Index State of Matter State							
Pillar Geometry Pillar Dist	ribution						
Height	300 nm						
Side Wall Slope Angle	116.565°						
Shape	○ Squared						
Definition Mode of Diam	Bottom \vee						
Round Edges							
Landa in		-					

Talbot Pattern at a Certain Position

The intensity at a certain z-position is calculated separately for the input beams with different polarization states (linear x- and y-polarization).

result from x-polarized input

result from y-polarized input

Talbot Pattern at a Certain Position

unpolarized

У∤

Talbot Pattern at Different Positions

simulation result from reference: I.-H. Lee, *et al.*, Opt. Express 23, 25866-25873 (2015). [Fig. 2 (b) d_{M1}=120nm]

(b)

Talbot Pattern at Different Positions

Min

simulation result from reference: I.-H. Lee, *et al.*, Opt. Express 23, 25866-25873 (2015). [Fig. 2 (c) d_{M2}=920nm]

(c)

Intensity along Z-Axis

simulation result in VirtualLab Fusion

simulation result from reference: I.-H. Lee, *et al.*, Opt. Express 23, 25866-25873 (2015). [Fig. 2 (a)]

VirtualLab Fusion Technologies

title	Talbot Images of A Conical Phase Mask
document code	GRT.0023
document version	1.1
software edition	VirtualLab Fusion Advanced
software version	2021.1 (Build 1.180)
category	Application Use Case
further reading	 <u>Ultra-Sparse Dielectric Nano-Wire Grid Polarizers</u> <u>Grating Order Analyzer</u> <u>Modeling of the Talbot Effect</u> <u>Configuration of Grating Structures by Using Interfaces</u> <u>Configuration of Grating Structures by using Special Media</u>