

Thin Element Approximation (TEA) vs. Fourier Modal Method (FMM) for Grating Modeling

Abstract

The Thin Element Approximation (TEA) is a widely-used method in Fourier optics to calculate the diffraction efficiency of gratings. However, it is also known that the approximation becomes inaccurate for smaller grating periods, means closer to the wavelength of light. In this example, two types of transmission gratings are selected to showcase this effect: sinusoidal and blazed. We use both TEA and FMM (also known as RWCA, which is rigorous) to analyze such gratings with varying period, and by comparing the results, we investigate the behavior of the two methods.

Modeling Task

For both the sinusoidal and the blazed gratings, the diffraction efficiency is analyzed by applying TEA and FMM.

Grating Component

Coordinate	Component Propagation	Fourier Modal Method Fourier Modal Method Thin Element Approximation	✓ Edit	
Systems	Interface	Stack	Medium	
1	1 Plane Interface Fourier Modal Met	Slanted Grating V Fourier Modal Met V	Non-Dispersive Material Fourier Modal Met	
Position / Orientation	2 Plane Interface Fourier Modal Met	Stack	Non-Dispersive Material	
Propagation				

The General Grating Component allows the user to choose different solver algorithm in the simulation. The user can choose between the rigorous *Fourier Modal Method* (FMM) and the approximated, but faster *Thin Element Approximation* (TEA). More information about the solvers can be found here:

- FMM/RCWA
- Diffractive Lens Component

Sinusoidal Grating – Efficiency vs. Height (TEA Only)

It is often efficient to use TEA as a fast design tool for searching proper grating parameters. However, the limitation of the method shall be noticed.

To have symmetric diffraction effect without zeroth order, we pick up h=815 nm as the grating height.

Sinusoidal Grating – Transmitted Phase Profiles

phase behind grating (FMM)

Sinusoidal Grating – Transmitted Phase Profiles

Sinusoidal Grating – Diffraction Efficiencies

diffraction efficiencies (TEA)

diffraction efficiencies (FMM)

Sinusoidal Grating – Efficiencies vs. Period

diffraction efficiencies – 0th order

FMM

10

8

— TEA

diffraction efficiencies – 1st order

Sinusoidal Grating – Phase Profiles at Selected Periods

Blazed Grating – Efficiency vs. Height (TEA Only)

It is often efficient to use TEA as a fast design tool for searching proper grating parameters. However, the limitation of the method shall be noticed.

To maximize the diffraction efficiency of the -1st order, we pick up h=1064 nm as the grating height.

Blazed Grating – Transmitted Phase Profiles

phase behind grating (TEA)

phase behind grating (FMM)

Blazed Grating – Diffraction Efficiencies

diffraction efficiencies (TEA)

diffraction efficiencies (FMM)

Blazed Grating – Efficiencies vs. Period

diffraction efficiencies – 1st order

Blazed Grating – Phase Profiles at Selected Periods

VirtualLab Fusion Technologies

title	Thin Element Approximation (TEA) vs. Fourier Modal Method (FMM) for Grating Modeling
document code	GRT.0019
document version	2.1
software edition	VirtualLab Fusion Advanced
software version	2021.1 (Build 1.180)
category	Application Use Case
further reading	 <u>Analysis of Slanted Gratings for Lightguide Coupling</u> <u>Grating Order Analyzer</u> <u>Configuration of Grating Structures by Using Interfaces</u>