

Single-Molecule Imaging with High-NA Fourier Microscope

Abstract

Fourier microscopy is widely used for singlemolecule imaging, surface plasma observation, photonic crystal imaging, etc. It enables the direct observation of the spatial frequency distribution. Different effects in the high-NA Fourier microscope (angledependent Fresnel losses at each lens surface, diffraction, etc.) can affect the final image quality obtained for the single molecule. The fast physical optics software VirtualLab Fusion can model the entire system with its powerful Field Tracing engine, including the Fresnel losses and aperture diffraction effects. An example is presented, and we compare the simulation results with experimental results from literature.

Modeling Task

System Building Blocks: Dipole Source

System Building Blocks: Objective Lens

Objective lenses, such as the one used in this system, are usually quite complex structures, containing many interfaces and dispersive materials.

In VirtualLab Fusion, this can be modeled using the *Lens System Component*. There, the optical engineer can build up a component from a sequence of interfaces and materials.

System Building Blocks: Tube & Bertrand Lenses

Help

Summary of Model

Optical System	Elements in VirtualLab Fusion	Model/Solver/Detected Value
1. dipole source	Programmable & Multiple Light Source	lateral field distribution
2. objective lens	Lens System Component	Local Plane Interface Approximation
3. tube lens	Lens System Component	Local Plane Interface Approximation
4. Bertrand lens	Lens System Component	Local Plane Interface Approximation
5. detector	Camera Detector	energy density measurement

Image at the Fourier Plane

Simulation Comparison for Orientation [0,1,0]

In order to further investigate the physical effects, we took dipole orientation [0,1,0] and compared the obtained results to an experimental measurement [Juškaitis, Springer US, (2006)]. The blue and green curves are taken from the corresponding 1D cross-sections of the simulation result. Cross-sectional references of an idealized case (diffraction neglected) are depicted in red. The data of the reference curves was calculated analytically by applying formulas given in the reference publication and finally imported into VirtualLab Fusion.

VirtualLab Fusion Technologies

title	Single-Molecule Imaging with High-NA Fourier Microscope	
document code	MIC.0008	
document version	1.1	
software edition	VirtualLab Fusion Basic	
software version	2021.1 (Build 1.180)	
category	Application Use Case	
further reading	 Analyzing High-NA Objective Lens Focusing Resolution Investigation for Microscope Objective Lenses by Rayleigh Criterion Reflecting Microscope System with Very High Numerical Aperture 	