

Single-Grating Interferometer for X-Ray Imaging

Abstract

X-ray imaging is often based on the Talbot effect, and the periodic selfimaging of gratings. Following the work of N. Morimoto et al., we selected three types of phase gratings, with cross, checkerboard, and mesh patterns. The gratings are employed in a single grating interferometer, modeled as phase-only transmission functions (because the x-ray wavelength is much smaller than the smallest feature size of the grating), and their self-images are examined in VirtualLab Fusion.

Modeling Task

The Phase Grating

If the smallest features of a grating structure are larger than approximately five times the wavelength of the incident light, the resulting phase values are proportional to the structure.

As this condition is met in this use case, we simulate the gratings via a functional approach.

We use an ideal component in our optical setups, where the electromagnetic field is multiplied with a phase-only transmission function, which can be easily programmed.

Summary – Components...

of Optical System	in VirtualLab Fusion	Model/Solver/Detected Magnitude
1. source	Spherical Wave	Spherical Wave
2. phase grating	Programmable Function	Phase Only Transmission Function
3. detector	Camera Detector	Energy Density Measurement

Cross-Pattern Phase Grating

Checkerboard-Pattern Phase Grating

Mesh-Pattern Phase Grating

Workflow in VirtualLab Fusion

Specify or customize transmission functions

How to Work with the Programmable Function & Example

(Cylindrical Lens) [Use Case]

- Select proper detector for field visualization
 - Electromagnetic Field Detector [Use Case]
- Set the Fourier transforms properly
 - Fourier Transform Settings Discussion at Examples
 [Use Case]

```
Edit Programmable Function
                Basic Parameters Physical Parameters Sampling
                  Definition
                  Edit
                                                                         Validity:
    Systems
                  Parameters 4 8 1
     Pitch
    Position /
                                                                               3.14 rad
                  PhaseShift
   Orientation
                              Source Code Editor
    #
                              Source Code Global Parameters Snippet Help Advanced Settings
    Function
                                          // define absolute value
                                          var abs = 1.0:
                                          var ix = Math.Floor(x / Pitch);
                                          var iy = Math.Floor(y / Pitch);
                                          var refx = ix * Pitch;
                                          var refy = iy * Pitch;
                                          var dy = y - refy;
                                          double arg = 0.0::
                                          if(dy <= 0.25 * Pitch){
                                              if(dx > 0.25 * Pitch && dx <= 0.75 * Pitch
                                                   arg = 0.5 * PhaseShift:
                                 19
                                         else if(dy > 0.75 * Pitch){
                                              if(dx > 0.25 * Pitch && dx <= 0.75 * Pitch
```

VirtualLab Fusion Technologies

idealized component

Document Information

title	Single-Grating Interferometer for X-Ray Imaging
document code	MISC.0079
version	2.1
edition	VirtualLab Fusion Basic
software version	2023.1 (Build 1.556)
category	Application Use Case
further reading	 Modeling of the Talbot Effect Fourier Transform Settings – Discussion at Examples Diffraction Patterns behind Different Apertures