

Robustness Optimization of a Slanted Grating

Abstract

Due to potential inaccuracies in the manufacturing process, it is essential for a good grating design to provide robust results in the face of slight variations in the grating parameters. VirtualLab Fusion offers the optical engineer various tools to incorporate this behavior directly in the optimization process, such as the Parameter Variation Analyzer. This tool combines multiple iterations of the same system, enabling the representation and automatic calculation of merit functions, like the mean efficiency, during optimization. In this use case we demonstrate this feature by optimizing a slanted grating with a slightly varying fill factor.

Simulation Task

plane wave

- wavelength: 532nm
- linearly polarized along xaxis

slanted grating

- operation order: +1st (transmission)
- fill factor: 50% ± 1%
- medium in front: air
- medium behind: n=1.6
- period: 500nm
- grating height (initial): 250nm
- slant angle (initial): 40°

optimization parameters

- grating height: varied between 200nm and 1000nm
- slant angle: varied between 0° and 60°

To perform a robustness analysis, efficiencies of 5 different fill factors between 49% and 51% will be combined in two merit functions: contrast (of the diffraction efficiencies) & mean efficiency.

Connected Modeling Techniques: Slanted Grating

Available modeling techniques for microstructures:

Methods	Preconditions	Accuracy	Speed	Comments
Functional Approach	-	low	very high	diffraction angles acc. to grating equation; manual efficiencies
Thin Element	smallest features > $\sim 10\lambda$	high	very high	inaccurate for larger NA and thick
(TEA)	smallest features < $\sim 2\lambda$	low	very high	elements; x-domain
Fourier Modal	period < ~ $(5\lambda \times 5\lambda)$		high	rigorous solution; fast for structures and periods similar to
Method (FMM)	period > ~ $(15\lambda \times 15\lambda)$	very high	slow	the wavelength; more demanding for larger periods; k-domain

The considerable modulation height and small period make the **Thin Element Approximation** (TEA) solver inaccurate in the given case. Hence, the **Fourier Modal Method (FMM)** is used to provide a rigorous solution.

Grating Order Analyzer

The *Grating Order Analyzer* can be used to investigate the efficiency of the diffraction orders of a given grating. Find more information under:

Grating Order Analyzer

	ers		General Single Orders	
Order Selection Str	ategy		Output for Evaluated Direct	ions
Selection Strategy	Order Range	~	Order Collections	Transmission
	x	Y	Single Order Output	Reflection
Minimum Order	1 🖨	0 🖨		🗌 Incident Way
Maximum Order	1 😫	0 😫		
			General Output	
Coordinates	1		Summed Transmission,	Absorption, and Reflection
Spherical Angle	s 🗌 Cartes	ian Angles	Polar Diagram (Angle α	Only)
Wave Vector Co	mponents 🗌 Positio	ons		
Efficiencies				
Rayleigh Coefficien	ts			
	🗌 Ey	🗌 Ez		
	UIM			

resulting efficiency in the Detector Results tab: Efficiency T[+1; 0] 11.997 %

Parameter Variation Analyzer

Since results generated with different grating configurations must be considered, the *Parameter Variation Analyzer* is used to calculate the overall merit function. This tool enables the computation of efficiencies for gratings with different fill factor values, automatically determining the resulting mean efficiency and contrast. For more information, see:

Parameter Variation Analyzer

merit functions:

mean efficiency – to be maximized: $\eta_{\text{mean}} = \frac{\sum_{i}^{n} \eta_{i}}{n}$ contrast (of diffraction efficiency) – to be minimized: $u = \frac{\eta_{\text{max}} - \eta_{\text{min}}}{\eta_{\text{max}} + \eta_{\text{min}}}$

With η_i the 1st order transmission efficiency for the ith value of the fill factor.

Parametric Optimization

Now, the grating can be optimized using the inbuilt *Parametric Optimization*. A mean efficiency of 100% (to maximize this value) und uniformity contrast of 0% (to minimize this value) are used as target values for the merit function.

Ceneral Grating ⁻ (# 1) Parameter Variation Analyz Coptimization timization Results art or stop the optimization routin	yzer" (# 801) (Mean Efficien	cy & Uniformity)	Stack #1 (Stack #1 (mean effic contrast o	Incouple Gratii Incouple Gratii ciency of diffraction eff	ng (Slanted)) ng (Slanted)) iciency		1 Range 1 Range 1 Target 20 Target	Value Value	50 nm 1 μn 0° 60 100 % 0 %	250 nm 45° 6,8003 % 9,0159 %	84.2 15.7
2: Optimization imization Results art or stop the optimization routin	yzer" (# 801) (Mean Efficien	cy & Uniformity)	Stack #1 (mean effic contrast o	Incouple Gratin ciency of diffraction eff	ng (Slanted)) ficiency		1 Range 1 Target 20 Target	Value Value	0° 60 100 % 0 %	• 45• 6.8003 % 9.0159 %	84.2 15.7
Parameter Variation Analyz 2: Optimization timization Results art or stop the optimization routin	yzer" (# 801) (Mean Efficien	cy & Uniformity)	mean effic contrast o	ciency of diffraction eff	iciency		1 Target 20 Target	Value Value	100 % 0 %	6.8003 % 9.0159 %	84.2
2: Optimization timization Results art or stop the optimization routin	ting. The second second second		contrast o	of diffraction eff	iciency		20 Target	Value	0 %	9.0159 %	15.7
2: Optimization imization Results rt or stop the optimization routir	ting The secold research										
: Optimization mization Results t or stop the optimization routin	tine. The second second second										
mization Results t or stop the optimization routin	dias. The secults are shown										
t or stop the optimization routin	tine. The seculte are shown										
or stop the optimization routi	these like consulte are chains										
							Simulation	Step			
tector Sul	ubdetector	Combined Out	tput 11	112	113	114	115	116	117	118	
timizer Logging Tar	arget Function Value	Data Array	94	0.00044288	0.00044285	0.00044278	0.00044271	0.00044264	0.00044262	0.0004456	0.00044
Slar	lant Angle ("General Grati	. Data Array	🥖 55°	29.568°	29.569°	29.572°	29.577°	29.583°	29.588°	29.598°	29.
z-E)	-Extension ("General Grati	. Data Array	mר 🖉	860.23 nm	860.18 nm	860.06 nm	859.91 nm	859.67 nm	859.5 nm	859.14 nm	859.12
	ontrast of diffraction effici.	Data Array	1 %	0.082483 %	0.082194 %	0.081423 %	0.080458 %	0.078954 %	0.077881 %	0.081698 %	0.07707
rameter Variation con	neon efficiency	Data Array	1 1	07 028 %	07 0 29 9/	97 928 %	97.927 %	07 036 9/	07.005.0/	07 021 9/	07.07
ameter Variation lyzer" (# 801) (Mean tiency & Uniformity) mea	rearr enriciency	Data Array	/ %	37.320 %	37.320 76	31.320 70	211221 70	37.320 76	97.925 %	37.321.70	31.91

More information under: Introduction to the Parametric Optimization Document

Optimization Result – Mean Efficiency

initial design:

- height: 250nm
- slant angle: 45°
- mean efficiency: 6.8%
- contrast: 9.0%

The optimization led to a drastic improvement of the mean efficiency, increasing from ~7% to almost 100%.

optimized design:

- height: 859.5nm
- slant angle: 29.6°
- mean efficiency: 97.9%
- contrast: 0.1%

Optimization Result – Contrast

initial design:

- height: 250nm
- slant angle: 45°
- mean efficiency: 6.8%
- contrast: 9.0%

At the same time, the contrast also improved. While in the initial system a linear behavior between efficiency and fill factor was observed, the optimized result is much more even.

optimized design:

- height: 859.5nm
- slant angle: 29.6°
- mean efficiency: 97.9%
- contrast: 0.1%

title	Robustness Optimization of a Slanted Grating
document code	GRT.0034
document version	1.0
required packages	Grating Package
software version	2023.2 (Build 1.242)
category	Application Use Case
further reading	 <u>Grating Order Analyzer</u> <u>Parameter Variation Analyzer</u> <u>Introduction to the Parametric Optimization Document</u>