

Rigorous Analysis and Design of Anti-Reflective Moth-Eye Structures

Abstract

The suppression of reflection at surfaces of components is of interest for numerous optical applications. One very interesting approach to controlling the reflection at surfaces is the use of anti-reflective nano- and microstructures, which are motivated by nature (moth-eye). These structures with feature sizes in the subwavelength domain exhibit unique properties concerning wavelength and angular dependency. In this document, the analysis and design of deterministic anti-reflective structures in VirtualLab Fusion is presented.

Design Task

Connected Modeling Techniques: Moth-Eye Structure

Available modeling techniques for microstructures:

Methods	Preconditions	Accuracy	Speed	Comments
Functional Approach	-	low	very high	diffraction angles acc. to grating equation; manual efficiencies
Thin Element	smallest features > $\sim 10\lambda$	high	very high	inaccurate for larger NA and thick
(TEA)	smallest features < $\sim 2\lambda$	low	very high	elements; x-domain
Fourier Modal	period < ~ $(5\lambda \times 5\lambda)$	very high	high	rigorous solution; fast for structures and periods similar to
Method (FMM)	period > ~ ($15\lambda \times 15\lambda$)	very high	slow	the wavelength; more demanding for larger periods; k-domain

Due to the small feature sizes (in the order of magnitude of the wavelength), the **Fourier Modal Method (FMM)** provides a very accurate and fast solution and hence is used for the analysis.

Grating Order Analyzer

The Grating Order Analyzer can be used to investigate the order efficiencies of any given grating. Find more information under:

Grating Order Analyzer

	zer	~	Edit Grating Order Analyzer	
eneral Single Orde	ers		General Single Orders	
Order Selection Str	ategy		Output for Evaluated Direction	s
Selection Strategy	Order Range	~	Order Collections	💽 Transmissio
	x	Y	Single Order Output	Reflection
Minimum Order	1 🖨	0		Incident Way
Maximum Order	1 🔶	0	General Output	
Coordinates			Summed Transmission, Ab:	sorption, and Reflection
Spherical Angle	s 🗌 Cartesi	an Angles	Polar Diagram (Angle α On	ly)
Wave Vector Co	mponents 🗌 Positio	ns		
Efficiencies				
Rayleigh Coefficien	its			
Rayleigh Coefficien	Ey	🗌 Ez		

Help

X

Incident Wave

Field Inside Component Analyzer: FMM

With the *Field Inside Component Analyzer: FMM*, the propagated field can be displayed in various planes inside the moth-eye structure. Find more information under:

Field Inside Component Analyzer: FMM

Parameter Run

To analyze the behavior in the tolerance range envisaged for the device, a parameter sweep is performed with the Parameter Run document.

More information under: Usage of the Parameter Run Document

Parametric Optimization

Then, the grating structure can be optimized using the in-built Parametric Optimization. A reflection efficiency of 0 (to minimize this value) is used as target for the optimization.

More information under:

Introduction to the Parametric Optimization Document

							y vaneu ra	ameters	f C	
Object Category oth-Eye" (# 1) Stack #1 (Stack) Surface #1 (Tr		Surface #1 (Tr	Parameter	Va	ary (riginal value				
		Surface #1 (T	uncated Cone Grating Interface) TopDiamate			70 nm				
C	52: D:\LightTrans constraint Specific Select and specify f	\AR Moth E ations the constraints	ve_03a_Parametric Optimization_for Solution which shall be considered during optimization.	#1.op	t					
	Constrain	t Host	Constraint Name	Use	Weight	Constraint Type	Value 1	Value 2	Start Value	Contribut
	"AR Moth-Eve" (# 1	1	Stack #1 (Stack) Surface #1 (Truncated	_		1 Range	130 nm	170 nm	150 nm	
	the mount of a loss	1	Stack #1 (Stack) Surface #1 (Truncated		-	1 Range	50 nm	90 nm	70 nm	
			Overall Reflection Efficiency			1 Target Value	0 %		0.01259 %	10
		alyzer" (# 800)	Overall Paflection and Transmission	H			-			-
	"Grating Order Ana		overall Reflection and inarismission	n			1			1
	"Grating Order Ana		Absorption							

52: D:\Lig

Select the p

You can sele

Filter by... 12*

Simulation Results

Reference Measurement by Calculator

In this example, we want to minimize the reflection at the surface of a substrate, which consists of PMMA (polymethylmethacrylate).

The *Fresnel Effects Calculator* can be used to get information about the reflectance and transmittance at an interface between air and PMM (3.93% without any anti-reflection).

Learn more about the *Fresnel Effects Calculator* under: <u>Fresnel Curves on a Plane</u>

<u>Surface</u>

First Material	Tables Diagram		
lame Air Q	Wavelength	532 nm Ang	le of Incidence0°
State of Matter Gas or Vacuum	Intensity Coefficien	nts	
ame PolyMethylMethAcrylate-PMMA		TE	ТМ
Catalog Material 🗸 🗸 📔	Reflectance	0.039276	0.039276
State of Matter Solid ~	Transmittance	0.96072	0.96072
Coating	Complex Fresnel (Coefficients	
		TE	TM
	Reflection	0.19818 .exp(-3.1416 rad .i)	0.19818 exp(0 rad -i)
	Transmission	0.80182 .exp(0 rad .i)	0.80182 .exp(0 rad .i)
First Material Material R R			

Scanning over Parameter Space for Initial Solutions

Parametric Optimization for Initial Solution #1

Performance Analysis of Final Design #1

Parametric Optimization for Initial Solution #2

Performance Analysis of Final Design #1

title	Rigorous Analysis and Design of Anti-Reflective Moth-Eye Structures
document code	GRT.0011
document version	2.0
software edition	VirtualLab Fusion StandardGrating Package
software version	2023.2 (Build 1.242)
category	Feature Use Case
further reading	 <u>Thin Element Approximation (TEA) vs. Fourier Modal Method (FMM) for Grating Modeling</u> <u>Parametric Optimization and Tolerance Analysis of Slanted Gratings</u> <u>Field Inside Component Analyzer: FMM</u> <u>Fresnel Curves on a Plane Surface</u>