

Stretching or Compression of Ultrashort Pulses with Highly Efficient Transmission Gratings

Abstract

Precise control over the ultrashort pulses is of importance for various applications. Prisms and gratings are typical optical components that are used for manipulating the temporal behavior of pulses. In this example, we use two transmission gratings, according to the work of T. Clausnitzer *et al.*, to build up a stretching / compressing system for ultrashort pulses. Particularly, we analyze the polarization-dependent effects that is caused by the gratings, and we optimized the gratings to obtain a polarizationindependent system with high efficiency.

Task Description

Spatial Property of Output Beams (@Carrier Wavelength)

Energies of output beams for E_x - and E_y -polarized inputs are different, because the grating efficiency is polarization dependent.

Spectral Property of Output Pulses

5

Temporal Property of Output Pulses

Polarization-Independent Grating Design for Carrier Wavelength

reference: T. Clausnitzer, *et al.*, Proc. SPIE **5252**, 174-182 (2003)

How to use paramatric optimization to maximize the diffraction efficiency of -1st transmission order, for unpolarized input light?

variables	value range
grating depth h	0.1-10µm
fill factor f	20-80%
merit function	target
average efficiency= $0.5(\eta_x + \eta_y)$	100%

 $\eta_{x/y}$ is the efficency of -1st diffraction order for E_x - / E_y - polarized input

Parametric Optimization

downhill simplex optimization with FMM / RCWA for grating diffraction efficiency calculation

Task Description

Spatial Property of Output Beam (@Carrier Wavelength)

Powers of the output beams for E_x - and E_y -polarized inputs are similar, thanks to the optimized grating structure.

Spectral Property of Output Pulses

Temporal Property of Output Pulses

Peek into VirtualLab Fusion

Workflow in VirtualLab Fusion

- Set up input Gaussian field
 - Basic Source Models [Tutorial Video]
- Set up a real-structure grating and select the working diffraction order
- Select and set up the pulse evaluation detector
- Design of highly efficient polarization independent transmission gratings
 - <u>Analysis and Design of Highly Efficient</u>
 <u>Polarization Independent Transmission Gratings</u> [Use Case]

Constraint Host	Constraint Name	Use	Weight	Constraint Type	Value 1	
General Grating 2D #1	Stack #2 (Rectangular		1	Range	100 nm	
	Stack #2 (Rectangular		1	Range	20 %	
	Efficiency Ex-Direction					
Delecter Acel and #001	Efficiency Ey-Direction					
Polarization Analyzer #801	Polarization Contrast					
	Average Efficiency		1	Lower Limit	100 %	

VirtualLab Fusion Technologies

Document Information

title	Stretching or Compression of Ultrashort Pulses with Highly Efficient Transmission Gratings
document code	USP.0005
version	1.0
edition	VirtualLab Fusion Advanced
software version	2020.1 (Build 2.8)
category	Application Use Case
further reading	 Pulse Broadening in Dispersive Media Grating Stretcher for Ultrashort Pulses Analysis and Design of Highly Efficient Polarization Independent Transmission Gratings