

Pulse Broadening in Dispersive Media

Abstract

Ultrashort pulses are a promising tool for laser material processing applications. On the one hand, ultrashort pulses often show superiority in e.g. heat control and precision; on the other hand, due to dispersive effects, it can be challenging to maintain the pulse duration after propagation through a complete optical system. In this example, we investigate the relationship between pulse broadening and material dispersion, based on selected examples.

Modeling Task

- carrier wavelength 619nm
 - temporal duration 31 fs
 - Gaussian spatial profile [collimated]

How do the dispersion properties of different media affect the pulse after propagation over a certain distance?

System Building Blocks – Source

The input pulse can be defined as a Gaussian Pulse Spectrum, via Source > Gaussian Pulse Spectrum, which is intended to generate an ultra-short pulse with a Gaussian envelope. As a result, you obtain a spectrum with a Gaussian shape if the amplitudes are plotted over frequency.

spectrum domain (phase)

time domain

Pulse Specification			
O Definition by FWHM O Defin	ition by 1/e Diameter		
Pulse Duration	31 fs		
Carrier Wavelength	619 nm		
Carrier Frequency	484.3173796 THz		
Estimated Increase of Time Window	5		
Numerical Settings			
Squared Amplitude Truncation (Frequency Domain)	0.01 %		
Resulting Size of Angular Frequency Window	326.0234719 THz		
Squared Amplitude Truncation (Time Domain)	0.01 %		
Resulting Size of Time Window	565.0108759 fs		
Resulting Samples	29		
OK Cancel	Help		

Constant phase over wavelength implies transformlimited pulse, with the minimum possible temporal duration.

System Building Blocks – Components

The dispersion properties of different materials are listed in the table. In this example, the homogeneous media are modeled by a Lens System with a block of material sandwiched between two plane interfaces.

SF57

1.8466

1.8369

9.1×10⁻³

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Vacuum Wavelength λ [µm]

SF57

glass

Relative Refractive Index n

Refractive Index n

Relative

<u>б</u>

1.85

õ

System Building Blocks – Detectors

The *Pulse Evaluation Detector,* used in this example, automatically calculates the electromagnetic field in wavelength and time domain at a predefined point.

- Complete phase vs. frequency can be analyzed at a given spatial position.
- A linear fitting of the phase as a function of frequency is always strong and therefore dominates the complete phase, but only contains information about the temporal shift. Besides, a strong linear phase leads to a high number of sampling points.
- Thus, the residual phase (extracting a linear fit from the complete phase) is evaluated, which determines the temporal pulse profile with lower numerical effort.

Modeling Summary – Components...

#	of Optical System	in VirtualLab Fusion	Model/Method/Algorithm
1	source	Gaussian Wave source	temporal & spatial Gaussian function
2	homogeneous material	Lens System	LPIA & free space propagation
3	detector	Pulse Evaluation Detector	spectrum & temporal shape

Output Pulse – Residual Phase over Frequency

Output Pulse – Temporal Pulse Envelope

VirtualLab Fusion Technologies

title	Pulse Broadening in Dispersive Media
document code	USP.0001
document version	2.0
software edition	VirtualLab Fusion Basic
software version	2021.1 (Build 1.180)
category	Application Use Case
further reading	 Focusing of Femtosecond Pulse by using a High-NA Off-Axis Parabolic Mirror Pulse Focusing with High-NA Lens Grating Stretcher for Ultrashort Pulses