

Parametric Optimization of Fiber Coupling Lenses

Fibers are some of the most versatile components in modern optics. One of their most valued characteristics is their capacity to transport optical energy with very low losses across vast distances (even several kilometers). On the flip side, coupling light into a fiber in a way that achieves as high an efficiency as possible is often a very delicate endeavor: among other things, the fiber coupling lens must be well designed to ensure that the focal spot matches the propagating modes of the fiber as closely as possible. With the fast physical optics simulation and the parametric optimization in VirtualLab Fusion, we show the design of a plano-convex lens with a conical surface for the task of coupling light into a single-mode fiber

Design Task

System Building Blocks – Imported Lens File

System Building Blocks – Fiber Efficiency Detector

Optimization

Constraint Specifications								
elect and specify the constraints wi	hich shall be consid	dered	during opti	imization.				
								I
Constraint Host	Constraint Name	Use	Weight	Constraint Type	Value 1	Value 2	Start Value	Contribution
	Surface #1	\sim	1	Range	-1E+303 mm	1E+303 mm	1.7 mm	0 9
Initial Lens (Edmund_65254)" (# 1)	Surface #1	\sim	1	Range	-1000	1000	0	0 9
	Surface #2		4	Denne		45, 202	000	
	Surface #2	<u> </u>	1	Kange	0 mm	1E+303 mm	800 μm	0 9
Fiber Coupling Efficiency" (# 602)	Singlemode		1	Range Target Value	0 mm 100 %	TE+303 mm	88.442 %	100 9
Fiber Coupling Efficiency" (# 602)	Singlemode		1	Range Target Value	0 mm 100 %	12+303 mm	88.442 %	100 9

In order to find an optimized set of parameters for the lens, the *Optimization* document enables the definition of parameter constraints and weights for the target values. Find more information under:

Introduction to the Parametric Optimization Document

 Local Optimization 	◯ Global Optimization
Local Optimization Settings	
Optimization Algorithm Dov	vnhill Simplex 🗸 🗸
Maximal Number of Iterations	500
Maximum Tolerance	1E-12

Summary – Components...

of Optical System	in VirtualLab Fusion	Model/Solver/Detected Value
1. source	Gaussian Wave	spatial Gaussian function
2. coupling lens	Lens System Component	Local Plane Interface Approximation (LPIA)
3. fiber	Fiber Coupling Efficiency	overlap integral calculation

Evaluation of Initial Lens

Parametric Optimization

Initial lens parameters

- radius of curvature **R**=1.7 mm
- conical constant **k**=0
- lens thickness *t*=0.8mm

parametric optimization of coupling efficiency with downhill simplex algorithm

optimized lens parameters

- radius of curvature *R*=1.608mm
- conical constant *k*=-0.7139
- lens thickness t=0.6311mm

Evaluation of Optimized Lens

VirtualLab Fusion Technologies

title	Parametric Optimization of Fiber Coupling Lenses
document code	FCP.0003
version	3.0
edition	VirtualLab Fusion Basic
software version	2021.1 (Build 1.180)
category	Application Use Case
further reading	 Optimal Working Distance for Coupling Light into Single-Mode Fibers Comparison of Different Lenses for Fiber Coupling Introduction to the Parametric Optimization Document