

Optimization of Lightguide Coupling Grating for Single Incidence Direction

Abstract

Coupling of light into a lightguide is of major interest for various applications in modern optics. In VirtualLab Fusion, with the Fourier modal method (FMM, also known as RCWA) and parametric optimization tools, one can optimize the real grating geometries in order to achieve best coupling efficiencies for specific diffraction orders. This example showcases the design strategy for optimizing a binary grating for one specific incidence direction to obtain the optimum lightguide coupling efficiency.

Optimization Task

• linearly polarized along x-axis

Scanning Mode of Parameter Run

1: C:\Temp\\Coupling Grating Optimization_Normal_02_Initial Solutions Se	1: C:\Temp\\Coupling G	Grating Optimization_Normal	_02_Initial Solutions Se	arch.run			_	• 🗙
Parameter Specification Set up the parameter(s) to be varied.	Results Start the parameter run and a	analyze its results						
You can select one or more parameters which shall be varied as well as the resultin	Go!	esults for Next Run				the start for		
specifying how the parameters are varied per iteration.	Detector	Subdetector	Combined Output	1	2	teration Step 3	4	5
	Maria d Davara dava	Modulation Depth (Rectan	Data Array 🥖	200 nm	200 nm	200 nm	200 nm	200 nm
Usage Mode Scanning V Number of Iterations: 357	Varied Parameters	Relative Slit Width (Rectan	Data Array 🥖	10 %	15 %	20 %	25 %	30 %
Filter by	Grating Order Analyzer #8	Efficiency T[+1; 0]	Data Array 🥖	0.1294 %	0.3384 %	0.68194 %	1.1763 %	1.8182 %
1 2 * Object Category Parameter Vary From *Rectangula Stack #1 Surface #1 (Rectangular Gr 200 r r Grating" (Rectangula Surface #1 (Rectangular Gr 200 r Surface #1 (Rectangular Gr 10 °	Create Output from Selec	tion			< Ba	ck Nes	d >]	Show 7

The scanning mode of VirtualLab Fusion's *Parameter Run* document allows to perform a parameter sweep over a multi-dimensional (often 2D) region of the parameter space. This sweep can be applied to analyze the grating characteristics in detail. More information under:

Scanning Mode of Parameter Run

Search for Initial Solutions (Normal Incidence)

scanning over grating parameter space:

- modulation depth *h* from 200 to 1200 nm
- fill factor c/p from 10 to 90%

Using a rough scanning over grating parameter space, one can find possible initial solutions and avoid missing the global optimum.

Parametric Optimization

Constraint Host	Constraint Name	Use	Weight	Constraint Type	Value 1	Value 2	Start Value	Contribution
Destance (as Casting" (# 1)	Stack #1	~	1		800 nm	1.2 µm	950 nm	0 %
"Rectangular Grating" (# 1)	Stack #1		1	Range	40 %	70 %	55 %	0 %
Grating Order Analyzer" (# 800)	Efficiency T[+1;0]	~	1	Target Value	100 %		15.36352647 %	100 %

Optimization Strategy	
Local Optimization	 Global Optimization
– Local Optimization Settings –	
Optimization Algorithm Dov	wnhill Simplex \sim
Maximal Number of Iterations	500
Maximum Tolerance	1E-12
Initial Step Width Scale Factor	1

In order to find an adequate set of parameters for the grating, the *Optimization* document of VirtualLab Fusion is used. It enables to define a customized merit function, parameter constraints and weights for the target values. Find more information under:

Introduction to the Parametric Optimization Document

Final Design by Parametric Optimization (Normal Incidence)

Initial Solutions and Final Designs for 15° Incidence

VirtualLab Fusion Technologies

title	Optimization of Lightguide Coupling Grating for Single Incidence Direction
document code	GRT.0010
document version	2.0
software version	2021.1 (Build 1.180)
software edition	VirtualLab Fusion Advanced
category	Application Use Case
further reading	 Optimization of Lightguide with Continuously Modulated Grating Regions How to Set Up a Lightguide with Real Grating Structures Optimization of Slanted Grating for Lightguide Coupling over Desired FOV Scanning Mode of Parameter Run Introduction to the Parametric Optimization Document