Optimal Working Distance for Coupling Light into Single-Mode Fibers
Abstract

Single-mode optical fibers are widely used in different applications, and they play a crucial role in long-distance optical communication. Launching light into such kind of single-mode fibers can be a challenging task in practice. In this example, we select one commercially available lens, and show how to find the optimal working distance to achieve maximum coupling efficiency. Particularly, we demonstrate that the optimal working distance found by field tracing differs from the focal distance predicted by ray optics.
Modeling Task

- input field: fundamental Gaussian, wavelength 780 nm, diameter 660 µm
- Edmund 65254 (spherical lens): effective focal length 2 mm
- single-mode fiber: mode field diameter = 3 µm

• Is it the best solution to place the fiber end at the ray-optics focal plane behind the lens?
• How to find the optimal working distance to achieve maximum coupling efficiency?
The focal distance for the spherical lens is found first by using ray tracing in VirtualLab Fusion. The beam diameter (RMS) evaluated with ray tracing is 5.11 µm.
Field Tracing Evaluation at Ray-Optics Focal Distance

Edmund 65254 (spherical lens) - effective focal length 2mm

coupling efficiency $\eta = 29.4\%$

Field tracing in VirtualLab Fusion provide access to the full field information at any desired plane in the system.
Find Optimal Working Distance by Using Field Tracing

- input field
 - fundamental Gaussian
 - wavelength 780 nm
 - diameter 660 µm

Edmund 65254 (spherical lens)
- effective focal length 2 mm

- varying ...
 (from 1.5 to 1.7 mm)

The optimal working distance found by field tracing is 1.585 mm.
Evaluation at Optimal Working Distance

- input field
 - fundamental Gaussian
 - wavelength 780 nm
 - diameter 660 µm

- Edmund 65254 (spherical lens)
 - effective focal length 2 mm

- coupling efficiency $\eta = 88.6\%$
 (overlap integral calculation)

- $d = 1.585$ mm
 (found by field tracing)

- The calculation of the focal spot and the evaluation of the coupling efficiency takes only 2 seconds!
Peek into VirtualLab Fusion

Parameter Run for selected variables in system

ray tracing system analysis

visualization and analysis
Workflow in VirtualLab Fusion

- Set up input Gaussian field
 - [Basic Source Models](#) [Tutorial Video]
- Import coupling lens from Zemax file
 - [Import Optical Systems from Zemax](#) [Use Case]
- Find focal distance using ray optics
- Evaluate fiber coupling efficiency for initial working distance with field tracing
- Use Parameter Run to find optimal working distance
 - [Usage of the Parameter Run Document](#) [Use Case]
VirtualLab Fusion Technologies

Edmund 65254 (spherical lens) - effective focal length 2mm

Field Solver

- Crystals & anisotropic components
- Nonlinear components
- Free space
- Prisms, plates, cubes, ...
- Lenses & freeforms
- Apertures & boundaries
- GRATINGS
- Diffractive, Fresnel, meta lenses
- HOE, CGH, DOE
- Micro lens & freeform arrays
- SLM & adaptive components
- Diffractive beam splitters
- Diffusers
- Scatterer
- Waveguides & fibers
- Single-mode fiber
<table>
<thead>
<tr>
<th>title</th>
<th>Optimal Working Distance for Coupling Light into Single-Mode Fibers</th>
</tr>
</thead>
<tbody>
<tr>
<td>document code</td>
<td>FCP.0001</td>
</tr>
<tr>
<td>version</td>
<td>1.0</td>
</tr>
<tr>
<td>toolbox(es)</td>
<td>Starter Toolbox</td>
</tr>
<tr>
<td>VL version used for simulations</td>
<td>7.4.0.49</td>
</tr>
<tr>
<td>category</td>
<td>Application Use Case</td>
</tr>
</tbody>
</table>
| further reading | - Comparison of Different Lenses for Fiber Coupling
 - Parametric Optimization of Fiber Coupling Lens |