

Observation of Vortex-Array Laser-Beam Generation from Ince-Gaussian Beam

Abstract

Ince-Gaussian modes are the third complete family of exact and orthogonal solutions of the paraxial wave equation alongside the Hermite-Gaussian and Laguerre-Gaussian modes. Ince-Gaussian modes have a diversiform transverse pattern. In this document, following in the steps of Chu et al. [Opt. Express 16, 19934-19949 (2008)], a Dove prism-embedded unbalanced Mach-Zehnder interferometer is used to simulate the generation of vortex-array laser beams based on Ince-Gaussian modes. The resulting vortex-array laser beam generated by the proposed interferometric setup maintains its beam profile during propagation, also through a focus. Thus, the proposed vortex-array laser beams hold great promise for application in optical tweezers and atom traps in the form of twodimensional arrays.

Task Description

Ref: Shu-Chun Chu, Chao-Shun Yang, and Kenju Otsuka, "Vortex array laser beam generation from a Dove prism-embedded unbalanced Mach-Zehnder interferometer," Opt. Express 16, 19934-19949 (2008)

Ince Gaussian Mode Source

Edit Ince Gaussian Source			×	
Basic Paramete	ers	Spectral Parameters		
Spatial Parameters	Polarization	Mode Selection	Sampling	
Generate Cross Sect	tion			
Algorithm				
Snippet	🥖 Edit	Val	idity: 🕑	
Parameters				
Waist Radius			300 µm	
Ellipticity Parameter			1	
ᠵ Even Polynomials				
Order			2 🜩	
Degree			2 🜩	
	As Se	parate Window	🕡 Read Me	
Default Parameters	Ok	Cancel	Help	

The Ince-Gaussian source can be found in *Light Sources/Basic Source Models*, and offers the following adjustable parameters:

- Waist radius
- Ellipticity parameter
- Order of polynomial of the mode
- Degree of polynomial of the mode

A more detailed explanation of the meaning of the parameters and configuration of the source can be found here: <u>Ince-Gaussian Modes</u>

Detector Add-On

The Universal Detector enables the evaluation of the impinging field and the calculation of various physical quantities through so-called Add-Ons. As an example, they can calculate the Irradiance. For more information, see:

Universal Detector

Non-Sequential Tracing

Edit Ideal Beam Splitter Surface +/+ +/--/--/+ ø \sim urface #1 (Ideal Beam Splitter) Coordinate Systems Edit Ideal Beam Splitter R Surface +/+ +/- -/- -/+ Position / Surface #1 (Ideal Beam Splitter) Coordinate Systems × Position

With the channel configuration mode toggle set to *Manual Configuration*, the user can specify, for each surface in the system, which channels to open for the simulation. When the simulation is run, a preliminary analysis of the active light paths will be performed (by the so-called *Light Path Finder*). The field will then be traced along these light paths by the engine, to the detectors present in the system.

Summary – Components...

of Optical System	in VirtualLab Fusion	Model/Solver/Detected Value
1. source	Ince Gaussian Source	Ince-Gaussian mode calculation
2. beam splitter	Ideal Beam Splitter	transmission function
3. Dove prism	Plane Interfaces	Fresnel Matrix
4. mirror	Ideal Mirror	Local Plane Interface Approximation
5. lens	Ideal Lens	transmission function
6. detector	Universal Detector	irradiance

Simulation of Vortex-Array Laser-Beam Generation

The Dove prism will rotate the Ince Gaussian beam by 90°. Interfering the rotated beam with the original will create a pattern that remains stable through the focusing process and can be used for e.g. atom trap applications.

20

10

Radiometric Data (Irradiance

-20

-10

0

X [µm]

Generated Vortex Array Using Different Mode Orders in Source

Effect of Ellipticity Parameter on Vortex Array Pattern

Basic Paramete	rs	Spectral F	arameters
Spatial Parameters	Polarization	Mode Selecti	on Sampling
Generate Cross Sect	ion		
Algorithm			
Snippet	🖉 Edit	,	Validity: 🚺
	· · · · · · ·		
Parameters			
Waist Radius			300 µm
Ellipticity Parameter			12
ᠵ Even Polynomials			
Order			5 🜩
Degree			5 📥
begree			
	As Se	parate Window	🕜 Read Me

A higher value of the ellipticity parameter ε of the incident Ince-Gaussian laser beam reduces the curvature of the mode parabola, resulting in the generated vortices forming a less distorted (squarer) array.

VirtualLab Fusion Technologies

Document Information

title	Observation of Vortex-Array Laser-Beam Generation from Ince-Gaussian Beam
document code	SRC.0003
version	1.1
edition	VirtualLab Fusion Basic
software version	2023.1 (Build 1.556)
category	Application Use Case
further reading	 <u>Mach-Zehnder Interferometer</u> <u>Ince-Gaussian Modes</u>

Marketing Picture

