

Modeling of a Herriott Cell

Abstract

In spectroscopy of gases, in order to obtain a sensitive enough measurement of the absorption, it is often required to have long optical path lengths. Multiple-pass cells, where the gas-filled volume is encased between mirrors, are a way of fulfilling this requirement while at the same time controlling beam divergence on the way and preempting the need for extremely large devices. The Herriott cell is one example of this kind of system, characterized by the use of two spherical mirrors with a single off-axis hole drilled into one of them to allow for the entry and exit of the beam. The curvature of the mirrors redirects the beam and controls its divergence. In this use case, we investigate the simulation of a Herriott cell with the optics modeling and design software VirtualLab Fusion.

Task Description

Gaussian wave

- 2µm central wavelength
- 250 µm × 250 µm waist diameter

Herriott cell

- 100mm radius of curvature •
- 2.5mm × 2.5mm hole
- Filled with: •
 - air
 - CO_2^* (n=1.00044, absorption _ coefficient 0.11/m)

* Values from:

detector

- Old, J. G., K. L. Gentili, and E. R. Peck. "Dispersion of carbon dioxide." JOSA 61.1 (1971): 89-90.
- Wei, Peng-Sheng, et al. "Absorption coefficient of carbon dioxide across atmospheric troposphere layer." Heliyon 4.10 (2018): e00785.

Single-Platform Interoperability of Modeling Techniques

Each beam interacts with very different kinds of optical components while propagating through the complex system. Therefore, an accurate model requires a seamless interoperability of algorithms to be able to handle all aspects that arise:

free-space propagation
 reflection at the mirrors of the cell
 propagation through the hole
 detector

Connected Modeling Techniques: Free-Space Propagation

free-space propagation reflection at the mirrors of the ce propagation through the hole detector

Available modeling techniques for free-space propagation:

Methods	Preconditions	Accuracy	Speed	Comments	
Rayleigh Sommerfeld Integral	None	High	Low	Rigorous solution	
Fourier Domain Techniques	None	High	High	Rigorous mathematical reformulation of RS integral	
Fresnel	Paraxial	High	High	Assumes paraxial light;	
Integral	Non-paraxial	Low	High	moderate speed for very short distances	
Geometric	Low diffraction	High	Very high	Neglects diffraction	
Propagation	Otherwise	Low	Very high	effects	

In this particular case diffraction effects can be neglected as there are no hard edges or strong aperture effects. With this in mind, **Geometric Propagation** was chosen for a fast simulation of the system

Connected Modeling Techniques: Mirrors

free-space propagation
 reflection at the mirrors of the cell
 propagation through the hole
 detector

Methods	Preconditions	Accuracy	Speed	Comments
Functional Approach	No Fresnel losses	Low	Very High	Idealized version of a mirror
S matrix	Planar surface	High	High	Rigorous model; includes evanescent waves (for e.g. FTIR effect modeling)
Local Planar Interface Approximation	Surface not in focal region of beam	High	High	Local application of S matrix; LPIA; x-domain

In the case of the Herriott Cell we must deal with curved surfaces and have no focal regions in the system. Hence, the Local Planar Interface Approximation (LPIA) offers optimal speed and accuracy characteristics.

Conical Mirrors

In the *Light Guide Component*, it is possible to define regions on surfaces where a modeling technique different from that of the rest of the interface is applied. We use this feature to model the hole drilled in the first mirror of the cell to allow the entry and exit of the beam. To simulate the spherical shape of the mirror we select a *Conical Surface* with conical constant 0.

Connected Modeling Techniques: Hole

free-space propagation
 reflection at the mirrors of the cel
 propagation through the hole
 detector

Methods	Preconditions	Accuracy	Speed	Comments
transmission function	thin element	Low	Very High	Idealized version
FMM/RCWA	-	High	Low	Rigorous model
Local Planar Interface Approximation	Surface not in focal region of beam	High	High	Local application of S matrix; LPIA; x-domain

In our case, the beam is narrow enough to not interact with the hole overall, for that reason a functional approach is sufficient. Hole

The hole in the first mirror is modeled as an idealized transmission grating defined in a circular region with only the 0th order in transmission activated. To this order we manually assign an efficiency of 100%, in order to replicate the behavior of the hole.

Carbon Dioxide

							Refractive Index Absorption Coefficient Additional Information Define Refractive Index by Image: Constant Image: Constant Image: Object State	mation Temperature Data
							Relative to Reference Material Definition Control Parameters	Set: Validity:
: Optical	Path	\2022-02- ctors	04_Olga_BaladronZorita_Her	riott Cell,	_Milestone 1		A B	0.154489
: Optical	Path C:\UKP Team	\2022-02- ctors	04_Olga_BaladronZorita_Her	rriott Cell,	Milestone 1	Linkage	A B C	0.154489 0.0584738 8309.1927 210.92417
: Optical	Path Cause Management of the second s	tors	04_Olga_BaladronZorita_Her	riott Cell,	Milestone 1	Linkage Propz	A B C D	0.154489 0.0584738 8309.1927 210.92417 287.6419
Index 1	Setup Editor #1 (D:\UKP Team) Path Image: Comparison of the set	ctors	04_Olga_BaladronZorita_Her	Indix 1 2	Milestone 1 Oggi y Target Element Element Name Thorlabs [CM508-050- Thorlabs [CM508-050- Mo1]	Linkage Propz Field Traci	A B C D E	0.154489 0.0584738 8309.1927 210.92417 287.6419 Welp
Index 0 1	Setup Editor #1 (D:\UKP Team) Path Path Element Name Gaussian Wave Thorlabs [CM508-050-M01] Thorlabs [CM508-050-M01]	tors Ref. Type T R	Analyzers Medium Air in Homogeneous Med C02_2um in Homogeneous Air in Homogeneous Med	Ind x 1 2 3	Milestone 1 Oggi J Target Element Element Name Thorlabs [CM508-050- Thorlabs [CM508-050- M01] Thorlabs [MPD249V-	Clinkage Propa Field Traci Field Traci Field Traci	A B C D E	0.154489 0.0584738 8309.1927 210.92417 287.6419

When using a material that is not available in the *Materials* Catalog, it is possible to program it using the *Programmable Material.*

Connected Modeling Techniques: Detector

free-space propagation
 reflection at the mirrors of the cell
 propagation through the hole

4 detector

Full flexibility in detector modeling of different physical values, including e.g. the radiant energy density.

Parameter Coupling

The *Parameter Coupling* feature can be used to link parameters of the system, so that a certain relationship between them is maintained. In this case, we want to ensure a circular pattern in the distribution of the beam paths inside the Herriott cell, as a function of the x-coordinate (1) of the entrance point and the length of the cell (2). More information about the *Parameter Coupling* under:

Coupling of Parameters in VirtualLab Fusion

Formulas are taken from: D. R. Herriot, H. Kogelnik, and R. Kompfner, "Off-axis paths in spherical mirror interferometers," Appl. Opt. 3, 523–526 (1964).

Simulation Results

Ray Tracing Results

Ray & Field Tracing Results

With the non-sequential approach in VirtualLab Fusion, the system will automatically determine how many revolutions the multiple-pass light path will make around the optical axis until it hits the exit hole.

0.664

8

Field Tracing Results (with Mirror Distance of 84mm)

When the Herriott cell is filled with an absorptive gas (such as carbon dioxide for a beam with wavelength of 2µm) the decrease in amplitude can be measured after the resonator. Because of the low number of iterations in this design the effect is still weak, as can be observed from the figures on the right.

More Internal Reflections

The number of iterations depends on how often the beam will make its way about the optical axis until it hits the entrance point again. This can be manipulated by adjusting either the distance between mirrors or their curvature.

An in-depth formulation of how these parameters contribute to the number of iterations can be found in: D. R. Herriot, H. Kogelnik, and R. Kompfner, "Off-axis paths in spherical mirror interferometers," Appl. Opt. 3, 523–526 (1964).

Field Tracing Results (with mirror distance of 50mm)

A reduced resonator length leads to a stable Herriott cell with a higher number of iterations and therefore a net increase of the optical path length. This in turn leads to more absorption which can then be evaluated after the resonator.

title	Modeling of a Herriott Cell
document code	Misc.0094
document version	1.1
software edition	VirtualLab Fusion Basic
software version	2023.1 (Build 1.556)
category	Application Use Case
further reading	 <u>Coupling of Parameters in VirtualLab Fusion</u> <u>Examination of Sodium D Lines with Etalon</u>