Modeling of Microlens Arrays with Different Lens Shapes
Microlens arrays are found useful in many applications, such as imaging, wavefront sensing, light homogenizing, and so on. Due to different fabrication techniques / processes, the microlenses may appear in different shapes. In this example, microlens array with two typical lens shapes – square and round – are modeled. Because of the different apertures shapes, the focal spots are also different due to diffraction. The change of the focal spots distribution with respect to the imposed aberration in the input field is demonstrated.
Modeling Task

input field
- wavelength 633 nm
- diameter 1.5 mm
- uniform amplitude
- phase distributions
 1) no aberration
 2) spherical aberration
 3) coma aberration
 4) trefoil aberration

How to calculate field on focal plane behind different types of microlens arrays, and how does the spot distribution change with the input field aberration?

square lenses

round lenses
Results

wavefront error $[\lambda]$

no aberration

square microlens array

round microlens array

Diffraction due to square aperture

Diffraction due to round aperture

(color saturation at 1/3 maximum)
Results

spherical aberration

square microlens array

round microlens array

Fully physical-optics simulation of system containing microlens array takes less than 10 seconds.
Results

wavefront error \[\lambda \]

coma aberration

Focal spots distribution changes with respect to the aberration of the input field.
Results

wavefront error [λ]

Focal spots distribution changes with respect to the aberration of the input field.
Document Information

<table>
<thead>
<tr>
<th>title</th>
<th>Modeling of Microlens Array with Different Lens Shapes</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>1.0</td>
</tr>
<tr>
<td>VL version used for simulations</td>
<td>7.3.1.5</td>
</tr>
<tr>
<td>category</td>
<td>Application Use Case</td>
</tr>
</tbody>
</table>