Modeling of Etalon with Planar and Curved Surfaces
The basic setup of an optical etalon is a transparent plate with parallel surfaces. Such a structure forms a resonator, where transmittance and reflectance vary with the thickness of the etalon. Beside this simple configuration, more complex etalons, with e.g. non-parallel surfaces and curved surfaces, are designed and used for different applications. With the non-sequential field tracing technique of VirtualLab Fusion, several configurations of etalons are analyzed, and the differences in the output interference fringes are investigated including polarization effects.
Modeling Task

input plane wave
- wavelength 532 nm
- linearly polarized along y- or x-direction

etalon
- different configurations
 a) planar-planar (parallel)
 b) planar-planar (tilted)
 c) cylindrical-planar
 d) spherical-planar

How to calculate the interference fringes for etalons with different configurations?
The *Lens System Component* allows for an easy definition of a component consisting of various interfaces. Among other types of surfaces, it is possible to include planar, spherical and cylindrical interfaces as well as to define the media between them.
Channel System for Nonsequential Modeling

In the *Manual Channel Configuration* mode, the user can control which light paths should be considered during the simulation. The detailed configuration can be found on the *Channel Configuration* page. Further information can be found here:

- Channel Configuration For Surfaces and Grating Regions

Note: Geometry parameters of the system have been adjusted for illustration purposes.
a) Parallel Planar-Planar Surfaces

Constructive and destructive interference are alternating as the thickness of the etalon varies. Due to the perfect parallel and planar surfaces no fringes appear.

etalon configuration
a) planar-planar (parallel)
• varying thickness from 100µm to 99µm
b) Tilted Planar-Planar Surfaces

Linear interference fringes are introduced if one surface is tilted (even very slightly) due to the resulting linear phase of the light.
c) Cylindrical-Planar Surfaces

Polarization-dependent effects on the interference are considered in the simulation.

etalon configuration

c) cylindrical-planar
 • center thickness: 100µm
 • cylindrical (x) surface radius: 1 m

input polarization along x

input polarization along y
d) Spherical-Planar Surfaces

etalon configuration
- d) spherical-planar
 - center thickness: 100μm
 - spherical surface radius: 1m

Input polarization along x

Input polarization along y
VirtualLab Fusion Technologies

- prisms, plates, cubes, ...
- lenses & freeforms
- gratings
- diffractive, Fresnel, meta lenses
- lenses & freeforms
- apertures & boundaries
- HOE, CGH, DOE
- waveguides & fibers
- scatterer
- diffusers
- diffractive beam splitters
- SLM & adaptive components
- nonlinear components
- free space
- crystals & anisotropic components
- micro lens & freeform arrays
- HOE, CGH, DOE
- SLM & adaptive components
Document Information

<table>
<thead>
<tr>
<th>title</th>
<th>Modeling of Etalon with Planar or Curved Surfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>document code</td>
<td>IFO.0011</td>
</tr>
<tr>
<td>document version</td>
<td>1.3</td>
</tr>
<tr>
<td>software edition</td>
<td>VirtualLab Fusion Basic</td>
</tr>
<tr>
<td>software version</td>
<td>2021.1 (Build 1.180)</td>
</tr>
<tr>
<td>category</td>
<td>Application Use Case</td>
</tr>
<tr>
<td>further reading</td>
<td>- Examination of Sodium D Lines with Etalon</td>
</tr>
<tr>
<td></td>
<td>- Coherence Measurement Using Michelson Interferometer and Fourier Transform Spectroscopy</td>
</tr>
<tr>
<td></td>
<td>- Channel Configuration For Surfaces and Grating Regions</td>
</tr>
</tbody>
</table>