

Modeling and Analysis of Volume Holographic Gratings

Abstract

Volume holographic gratings have become powerful devices in the world of optics, offering distinct advantages over traditional surface relief gratings. These elements take advantage of the unique characteristics of volume holography, allowing for efficient and precise control of diffractive elements in a volume.

In this use case, we demonstrate the modeling of such a grating in VirtualLab Fusion, based on the configuration from the publication Barden, Samuel et al., "Volume-Phase Holographic Gratings and the Efficiency of Three Simple VPH Gratings."(2000).

Modeling Task – Configuration #1

plane wave

- design wavelength: 1064nm
 (to be varied from 300nm to 1.1µm)
- incident angle: 9.18°(*)
- linearly polarized along x-axis

(*) We realize inclined illumination by rotating the volume grating accordingly.

sinusoidal volume grating

- substrate material: N-BK7
- substrate thickness: 3mm
- grating thickness: 20µm
- grating period: 3.33µm
- grating base material: N-BK7
- ref. index modulation: 0.020

system parameters: Barden, Samuel et al., "Volume-Phase Holographic Gratings and the Efficiency of Three Simple VPH Gratings.", PUBL ASTRON SOC PAC 112 (2000).

performance evaluation of the first three transmitted diffraction orders

Modeling Task – Configuration #2

plane wave

 design wavelength: 532nm (to be varied from 320 nm to $1.1 \mu \text{m}$)

In this example, a layer of anti-

reflective (AR) coating is added to the first surface of the substrate

according to the paper.

- incident angle: 18.61°
- linearly polarized along x-axis

- substrate material: N-BK7
- substrate thickness: 3mm
- grating thickness: 4µm
- grating period: 833.33nm
- grating base material: N-BK7
- ref. index modulation: 0.065
- Coating MgF₂ thickness: 102.6nm(*)

(*) Note: the thickness of the coating layer was not given in the paper. Thus, with the help of the Parametric Optimization tool, a reasonable thickness was chosen for the modeling. Find more information under:

performance evaluation of

the first two transmitted

diffraction orders

Introduction to the Parametric Optimization Document

Connected Modeling Techniques: Volume Grating

Available modeling techniques for microstructures:

Methods	Preconditions	Accuracy	Speed	Comments
Functional Approach	-	low	very high	diffraction angles acc. to grating equation; manual efficiencies
Thin Element Approximation (TEA)	smallest features > $\sim 10\lambda$	high	very high	inaccurate for larger NA and thick
	smallest features < $\sim 2\lambda$	low	very high	elements; x-domain
Fourier Modal Method (FMM)	period < ~ $(5\lambda \times 5\lambda)$	very high	high	rigorous solution; fast for structures and periods similar to
	period > ~ ($15\lambda \times 15\lambda$)	very high	slow	the wavelength; more demanding for larger periods; k-domain

In this example, the structures are similar in size to the wavelength of light. Thus, a rigorous treatment of the grating is inevitable, as other solvers like **Thin Element Approximation (TEA)** become inaccurate. Hence, the **Fourier Modal Method (FMM)** is used to calculate the diffraction efficiency rigorously.

Customized Volume Grating

In this use case, we intend to generate a sinusoidally modulated volume grating using the *Programmable Medium*. We define the volume grating based on the following formula:

$$n(x, y, z) = dn \cdot \cos\left(2\pi \cdot \left(\frac{x}{\Lambda_x} + \frac{y}{\Lambda_y} + \frac{z}{\Lambda_z}\right)\right)$$

Here, Λ describes the grating period and dn describes the refractive index modulation.

Grating Order Analyzer

Edit Grating Order Analyzer	×	Edit Grating Order Analyzer	\times			
General Single Orders		General Single Orders				
Output for Evaluated Directions		Order Selection Strategy				
Order Collections	n	Selection Strategy Order Range \checkmark				
Single Order Output		x y				
Incident Way	ve	Minimum Order 1 🔹 0 🜩				
		Maximum Order 3 🖨 0 🖨				
General Output						
Summed Transmission, Absorption, and Reflection		Coordinates				
Polar Diagram (Angle α Only)		Spherical Angles Cartesian Angles				
		Wave Vector Components Positions				
		Paulaidh Coofficients				
OK Cancel	Help	OK Cancel Help				

The *Grating Order Analyzer* can be used to investigate the efficiency of the diffraction orders of a given grating. Find more information under:

Grating Order Analyzer

Parameter Run

The grating performance is evaluated by varying the wavelength of the impinging light. Such a variation of parameters can be achieved using a *Parameter Run.*

Usage of the Parameter Run Document

rame	ter Specifica	ation							
et up t	he parameter	r(s) to be varie	ed.						
	calact one o		ators which shall be varied	as well a	s the resulting	number of itera	tions Sou	aral moder are:	wailable
ou can Decifyi	ng how the p	or more paran parameters an	e varied per iteration.	as well a	is the resulting	number of itera	itions, sev	erai <u>modes</u> are a	available
sage I	Mode Stan	dard	\sim						
-								_	
Filter	by						×	Show Only Var	ied Parameters
2 *	Object	Category	Parameter	Vary	From	То	Steps	Step Size	Original Va
3	Optical	tical Environmen up Pa t	System Temperature		-273.15 °C	1e+100 °C	1	1e+100 °C	20 °C
	Setup Pa		Air Pressure		0 Pa	1 GPa	1	1 GPa	101.33 kF
9	"Ideal Plane Wave" (# 0)	Medium at "-" Output	Material (Air) Constan		0	1e+300	1	1e+300	0
			Material (Air) Partial P		0 Pa	1e+291 GPa	1	1e+291 GPa	0 Pa
			Wavelength	\checkmark	300.09 nm	1.1 µm	81	9.9989 nm	1.064 µn
			Weight		0	1e+300	1	1e+300	1
			Polarization Angle		0°	360°	1	360°	0°
9		Basal Positioning (Relative)	Spherical Angle Theta		-1e+300°	1e+300°	1	2e+300°	9.18°
			Spherical Angle Phi		-1e+300°	1e+300°	1	2e+300°	0°
	"General Grating 2D" (# 1)		Angle Zeta		-1e+300°	1e+300°	1	2e+300°	0°
		(# 1) (# 1) (# 1) (N- BK7_Schott in	Material (N-BK7_Schot		-1e+300	1e+300	1	2e+300	1.0396
			Material (N-BK7_Schot		-1e+300	1e+300	1	2e+300	0.006000
			Material (N-BK7_Schot		-1e+300	1e+300	1	2e+300	0.23179
			Material (N-BK7_Schot		-1e+300	1e+300	1	2e+300	0.020018
		Homogen	Material (N-BK7 Schot		-1e+300	1e+300	1	2e+300	1 0105

Efficiency vs. Wavelength – Configuration #1

The resulting diffraction efficiencies of the three orders are in perfect agreement with the results of the article.

Result from the paper: Barden, Samuel et al., "Volume-Phase Holographic Gratings and the Efficiency of Three Simple VPH Gratings.", PUBL ASTRON SOC PAC 112 (2000).

Note: The colored areas were added to highlight the discussed results.

Efficiency vs. Wavelength – Configuration #2

Despite the unspecified thickness of the anti-reflective coating, the results obtained in VirtualLab Fusion are in good agreement with the values given in the publication.

Note: The material data for MgF_2 available in VirtualLab Fusion is only valid for wavelength range from 320nm and upwards.

Result from the paper: Barden, Samuel et al., "Volume-Phase Holographic Gratings and the Efficiency of Three Simple VPH Gratings.", PUBL ASTRON SOC PAC 112 (2000).

Note: The colored areas were added to highlight the discussed results.

title	Modeling and Analysis of Volume Holographic Gratings	
document code	GRT.0037	
document version	1.0	
required packages	Grating Package	
software version	2023.2 (Build 2.30)	
category	Application Use Case	
further reading	 <u>Grating Order Analyzer</u> <u>Usage of the Parameter Run Document</u> <u>Holographically Generated Volume Grating</u> <u>Angular-Filtering Volume Gratings for Suppressing Higher Diffraction Orders</u> <u>How to Work with the Programmable Medium</u> 	