

Measurement of Orbital Angular Momentum (OAM) with Freeform Optical Elements

Abstract

Optical beams carrying orbital angular momentum (OAM) have been shown useful in telecommunication, because of their capacity to encode many (theoretically unbounded) information states. Despite of this advantage, decoding information – measuring the OAM – is often challenging. Following the work of M. P. J. Lavery et al., we build up an optical setup, with two freeform optical elements that transform the OAM into linear phases, in VirtualLab Fusion. With this setup, we demonstrate the efficient OAM measurement.

Modeling Task

concept and freeform lens parameters follow from M. P. J. Lavery, et al., Opt. Express 20, 2110-2115 (2012)

Modeling Task

concept and freeform lens parameters follow from M. P. J. Lavery, et al., Opt. Express 20, 2110-2115 (2012)

Simulation Result with Input L=-1

Simulation Result with Input L=0

Simulation Result with Input L=+1

Simulation Result with Input L=+2

Simulation Result with Input L=+3

Peek into VirtualLab Fusion

flexible definition of microsctructure surfaces

Edit Progr	ammable Ir	iterface						×			
Structure	Height Disc	ontinuities	Scaling	Periodization							
Interfac	e Specificatio	n									
Algorith	hms				A = 11						
Snipp	bet for Heigh	Profile			Edit	Va	lidity: 💟				
() N	umerical Gr	adient Calc	ulation		Accuracy Fac	tor		1			
OU	ser-Defined	Gradient C	alculation	1							
Param	eters										
Refrac	ctiveIndex							1.489			
Focal	Length							300 mm			
Param	neterD	Snippet Help	D								
Param	neterB										
		Mod	e Ira	nstorm	er Freet	orm L	ens a	71			
		Author	: Site Z	hang							
		Last M	odified	Monday, O	ctober 26, 20	20					
	~~~~~	Freefor 2110-2	m lens s 115 (20	surface profil 12)	le follows fron	n M. P. J.	Lavery,	et al., Opt	Express	20,	
		PAR	AMETE	R		DES	CRIPTIC	ON			
		Refrac	ctiveInd	ex Refracti	ive index (real	-valued)	at the de	esign wave	length		
		Focal	Length	Design	focal length o	f the lens	function	embedde	ed in the f	reeform	
		Param	neterD	Design	parameter D	(see refe	erence p	aper)			
		Param	neterB	Design	parameter B	(see refe	erence pa	aper)			
										Clos	

 $\sim$ 

V

#### visualization of field quantities (e.g., the phase)



#### **Workflow in VirtualLab Fusion**

- Customize microstructure surfaces
  - How to Work with the Programmable Interface & Example (Spherical Surface) [Use Case]
- Set the Fourier transforms properly
  - Fourier Transform Settings Discussion at Examples
     [Use Case]

tructure	Height Discontinuities	Scaling	Periodization			
Interfact	e Specification					
Snipp	bet for Height Profile			/ Edit	Validity: 🕑	
• N	umerical Gradient Calo	ulation		Accuracy Factor 1		
OU	ser-Defined Gradient C	alculation	1			
Param	eters					
Refrac	ctiveIndex				1.489	
FocalLength				300		
Param	neterD				8 mm	
Param	neterB				4.77 mm	
					🕢 Help	

#### **VirtualLab Fusion Technologies**





#### **Document Information**

title	Measurement of Orbital Angular Momentum (OAM) with Freeform Optical Elements
document code	MISC.0086
version	1.0
edition	VirtualLab Fusion Basic
software version	2020.1 (Build 3.4)
category	Application Use Case
further reading	<ul> <li><u>Generation of Optical Beams Carrying Orbital Angular Momentum</u> (OAM)</li> <li><u>How to Work with the Programmable Interface &amp; Example (Spherical Surface)</u></li> </ul>