

Investigation of Sodium D Lines with a Fabry-Pérot Etalon

Abstract

Fabry-Pérot etalons are widely used in laser resonators and spectroscopy for sensitive wavelength filtering. Typically, they are composed of two high-reflective (HR) coated surfaces with air or glass in between. In this example, an optical metrology system with a silica spaced etalon is set up to measure the sodium D lines in VirtualLab Fusion. With our seamless non-sequential single-platform interoperability of modeling techniques, the interference due to multiple reflections in the etalon is fully considered, and the influence from the reflectance of the applied coatings on the fringe contrast is investigated.

Modeling Task

Simulation & Setup: Single-Platform Interoperability

Single-Platform Interoperability of Modeling Techniques

Light will encounter and interact with different components as it propagates through the system and there may be multiple interactions at different points in the propagation. A suitable model that provides a good compromise between accuracy and speed is required for each of the following elements:

source (sodium-D lines)
 high-reflective coatings
 etalon
 free-space propagation
 spherical lens
 detector

Connected Modeling Techniques: Coatings

source (sodium-D lines)
 high-reflective coatings
 etalon
 free-space propagation
 spherical lens
 detector

Available modeling techniques for coatings/multilayer systems:

Methods	Preconditions	Accuracy	Speed	Comments
FMM/RCWA	None	High	Low	Rigorous model; includes evanescent waves; k- domain
S matrix	Planar surface	High	Very High	Rigorous model; includes evanescent waves; k- domain
Local Planar Interface Approximation	Surface not in focal region of beam	High	High	Local application of S matrix; LPIA; x-domain

Since the S-matrix solver operates entirely in the k-domain, no additional steps for switching between domains (Fourier transforms) are required for the application of this solver. This allows for the fastest possible simulation speed while maintaining a rigorous model.

Etalon with High-Reflective (HR) Coatings

For the coated etalon surfaces we employ the *Stratified Media Component*, since it provides a fast and rigorous solution for x, y-invariant layer stacks. The coating itself is defined by alternating titanium and silicon dioxide films, where the reflectivity increases with the number of iterations. More information about the *Stratified Media Component* under:

Stratified Media Component

tratified Media	Component				×	
Coordinate	Component Size Reference Surface (all Channels Plane Surface)	20 mm ×	20 n	nm 🚹	
A A		Edit Param	eters of Coatin	9		
	Load	Layer Defi	nition Process	Data		
osition / ientation	Aperture O Yes Coating Name HRCoating_01		Index: 1 2 3 4 :		Coating Layers	
	Coating Orientation Auto	Index	Thickness	Distance	Material	
Jm	Homogeneous Medium Behind	1	69.391942 nm	69.391942 nm	Titanium Dioxide-TiO2-ThinFilm	
Solver	Fused_Silica in Homogeneous N	2	107.31044 nm	76.702382 nm	Silicon_Dioxide-SiO2-ThinFilm	
	F Load	3	69.391942 nm	46.094324 nm	Titanium_Dioxide-TiO2-ThinFilm	
è∎→		4	107.31044 nm	53.404764 nm	Silicon_Dioxide-SiO2-ThinFilm	
⇔		5	69.391942 nm	22.796706 nm	Titanium_Dioxide-TiO2-ThinFilm	
annel		6	107.31044 nm	30.107146 nm	Silicon_Dioxide-SiO2-ThinFilm	
guration		7	69.391942 nm	99.499088 nm	Titanium_Dioxide-TiO2-ThinFilm	
\mathcal{F}^{-1}		Apper	nd	Insert	Delete Layer T	ools
nsforms		Waveler Minim 380	ngth Range of I um Wavelength 0.1060453 nm	Materials Maximum V 710.1924	Vavelength 4067 nm	
Validity	a 🕑				OK Cancel	Help

Connected Modeling Techniques: Etalon

source (sodium-D lines)
 high-reflective coatings
 etalon
 free-space propagation
 spherical lens

Available modeling techniques for free space propagation:

Methods	Preconditions	Accuracy	Speed	Comments
Rayleigh Sommerfeld Integral	None	High	Low	Rigorous solution
Fourier Domain Techniques	None	High	High	Rigorous mathematical reformulation of RS integral
Fresnel Integral	Paraxial	High	High	Assumes paraxial light;
	Non-paraxial	Low	High	moderate speed for very short distances
Geometric Propagation	Low diffraction	High	Very high	Neglects diffraction
	Otherwise	Low	Very high	effects

As the interaction with the surfaces are already handled with the coating solver, all that remains from the etalon is a freespace propagation step.

As we do not expect diffraction effects to play a major role **Geometric Propagation** is chosen for maximum speed.

Connected Modeling Techniques: Free-Space Propagation

- source (sodium-D lines)
 high-reflective coatings
 etalon
- 4 free-space propagation
- 5 spherical len
- 6 detecto

Available modeling techniques for free space propagation:

Methods	Preconditions	Accuracy	Speed	Comments
Rayleigh Sommerfeld Integral	None	High	Low	Rigorous solution
Fourier Domain Techniques	None	High	High	Rigorous mathematical reformulation of RS integral
Fresnel Integral	Paraxial	High	High	Assumes paraxial light;
	Non-paraxial	Low	High	moderate speed for very short distances
Geometric Propagation	Low diffraction	High	Very high	Neglects diffraction
	Otherwise	Low	Very high	effects

The same principle applies to the other free-space propagation steps.

Connected Modeling Techniques: Spherical Lens

source (sodium-D lines)
 high-reflective coatings
 etalon
 free-space propagation
 spherical lens

6 detecto

Available modeling techniques interaction with surfaces:

Methods	Preconditions	Accuracy	Speed	Comments
Functional Approach	No Fresnel losses	Low	Very High	transmission function
Thin-Element Approximation (TEA)	Shallow height modulation	Low	High	-
Local Planar Interface Approximation (LPIA)	Surface not in focal region of beam	High	High	Local application of S matrix; LPIA; x-domain

As the Thin Element Approximation (TEA) assumes thin components and a functional approach does not include Fresnel losses, the Local Planar Interface Approximation (LPIA) offers the best compromise between speed and accuracy.

Connected Modeling Techniques: Spherical Lens

source (sodium-D lines)
 high-reflective coatings
 etalon
 free-space propagation
 spherical lens

6 detector

VirtualLab Fusion's flexible *Universal Detector* as well as various parameter variation tools allow for the in-depth investigation of any optical system. In this case we want to measure the *Radiant Energy Density* at the detector and investigate its behavior depending on the wavelength and reflectance of the coatings.

Simulation Results

Visualization of Both Spectrum Lines

Finesse vs. Coating Reflectance

The overall transmission will peak at multiples of the resonance wavelength. The exact shape of these curves are also dependent on the reflectivity of the coatings applied on the etalon surfaces.

Please note that, in our example, real coatings are used. By design, coatings with a higher reflectance have more layers and are hence thicker, which effectively changes the distance between the surfaces of the etalon. This leads to a slight shift of the resonance peaks.

title	Examination of Sodium D Lines with Etalon		
document code	IFO.0012		
document version	2.2		
software edition	VirtualLab Fusion Basic		
software version	2023.1 (Build 1.556)		
category	Application Use Case		
further reading	 Modeling of Etalon with Planar or Curved Surfaces Coherence Measurement Using Michelson Interferometer and Fourier Transform Spectroscopy Stratified Media Component 		