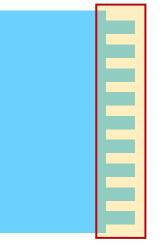

Analysis and Design of Highly Efficient Polarization Independent Transmission Gratings

Abstract

Gratings, especially those with feature size comparable to the wavelength, are known to possess polarization-dependent optical properties. That makes it difficult to design gratings with high diffraction efficiencies for arbitrary polarizations. Following the concept reported in literature [T. Clausnitzer, et al., Proc. SPIE 5252, 174-182 (2003)], we show how to analyze the polarization-dependent property of gratings rigorously, as well as how to use parametric optimization to design polarization-independent gratings with high diffraction efficiency.

Design Task

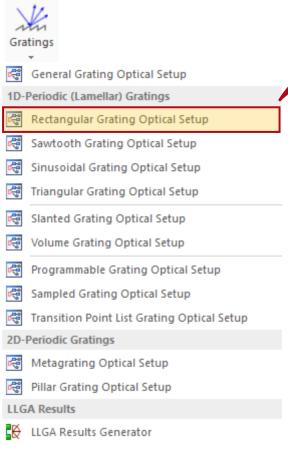


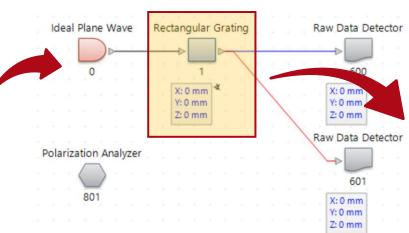
reference: T. Clausnitzer, *et al.*, "Highly efficient polarization independent transmission gratings for pulse stretching and compression," Proc. SPIE **5252**, 174-182 (2003)

How to optimized the grating structure parameters so to maximize the diffraction efficiency of -1st transmission order, for unpolarized input light?

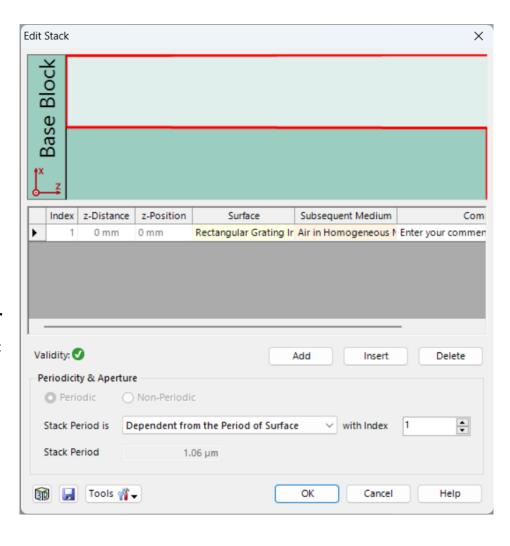
	Parameter	Value Range
	grating depth h	0.1-10µm
/ /	grating period d	550-1350nm
	fill factor f	20-80%

Connected Modeling Techniques: Grating Structure

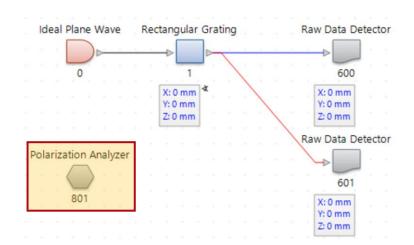



Available modeling techniques for microstructures:

Methods	Preconditions	Accuracy	Speed	Comments
Functional Approach	-	low	very high	diffraction angles acc. to grating equation; manual efficiencies
Thin Element Approximation	smallest features > $\sim 10\lambda$	high	very high	inaccurate for larger NA and thick
(TEA)	smallest features < $\sim 2\lambda$	low	very high	elements; x-domain
Fourier Modal	period < ~ $(5\lambda \times 5\lambda)$	very high	high	rigorous solution; fast for structures and periods similar to
Method (FMM)	period > ~ $(15\lambda \times 15\lambda)$	very high	slow	the wavelength; more demanding for larger periods; k-domain


Due to the small feature sizes (in the order of magnitude of the wavelength), the **Fourier Modal Method (FMM)** provides a very accurate and fast solution and hence is used for the analysis.

Grating Optical Setup



With the *Grating Package*, the user gains access to the grating specific optical setup that allows for a deeper investigation of different kind of gratings by applying the Fourier Modal method (FMM), which is also known as rigorous coupled wave analysis (RCWA).

Polarization Analyzer

One of these tools is the *Polarization Analyzer,* which allows for the definition of different coordinate systems and has an inbuilt *Parameter Run* function.

More Information under:

Polarization Analyzer

t Polarization Analyze	er							
Transmission								
•								
Analyzed Orders	Orders							
Selection Strategy	Order R]						
		x		Y				
Minimum Order		-1 🜩		-3 🜲				
Maximum Order	-1 + 3 +							
- Incidentia de Defensato			to Carton					
olarization Refers to	IE-I	M Coordina	ite System					
Output								
Efficiency for TM-F	olarizat	ion 🗌) Polarizati	on Contra	ast			
Efficiency for TE-P	olarizatio	on 🔽	Average B	fficiency				
Vary Wavelength an	d/or Ori	entation						
Drientation Definition T		Cartesian A	ngles		~			
Parameter	Vary	From	То	Steps	Step Size			
Wavelength	~	193 nm	3.71 µm	2	3.517 µm			
Cartesian Angle Alpha	~	-180°	180°	2	360°			
Cartesian Angle Beta		-180°	180°	2	360°			
Angle Zeta		-1e+300°	1e+300°	1	2e+300°			
Advanced Output								
Diagram		C) Minimum					
Uniformity Error) Maximum	1				
	6	04			He!-			
		OK	Can	cel	Help			

Optimization

21: Parametric Optimization								- • •	
Constraint Specifications									
Select and specify the constrain	ts which shall be considered during optimization								
Constraint Host	Constraint Name	Use	Weight	Constraint Type	Value 1	Value 2	Start Value	Contribution	
"Rectangular Grating" (# 1)	Stack #2 (Rectangular Grating) Surface #1		100	Range	500 nm	3.5 µm	3.4 µm	0 %	
Rectangular oracing (* 1)	Stack #2 (Rectangular Grating) Surface #1	\sim	100	Range	30 %	70 %	65 %	0 %	
"Polarization Analyzer" (# 801)	Efficiency Ex-Direction								
[Transmission]	Efficiency Ey-Direction								Optimization Strategy
	Average Efficiency		1	Target Value	100 %		69.32 %	100 %	Local Optimization Global Optimization
									Local Optimization Settings
Iools 🐐 🗸				Target Function \			0.094129	Update	Optimization Algorithm Downhill Simplex Maximal Number of Iterations
					<	Back	Next >	Show 7	Maximum Tolerance

Initial Step Width Scale Factor

In order to find optimized grating parameters, the *Optimization* document enables the definition of parameter constraints and weights for the target values. Find more information under

Introduction to the Parametric Optimization Document

Parameter Run

22: Pai	rameter Run								0								
ramet	ter Specification																
et up th	ne parameter(s) to	be varied.															
re varie sage N	ed per iteration. Node Scanning	re parameters which sh	nall be varied as well as the resulting numb Number of Iterations: 1891	ber of ite	erations. Se	everal <u>mod</u>				arameters							
							×	Shov				Iteratio	on Step				
Filter t	oy				20								Sirbicp				
Filter t	-	Category	Parameter	Vary	From	То	Steps	Step Siz	2	4	5	6	7	8	9	10	
1 2 *	Object "Rectangular	Stack #2	Surface #1 (Rectangular Grating Interf	Vary	From 2 µm				3	4 2 µm	5 2 µm		7 2 μm		9 2 µm	10 2 µm	2
1 2 *	Object	Stack #2		-			Steps	Step Siz	3	4 2 μm 53 %	2 µm	6	7 2 µm	2 µm			
1 2 *	Object "Rectangular	Stack #2	Surface #1 (Rectangular Grating Interf	-	2 µm	3.5 µm	Steps 61	Step Siz	3 2 μm	-	2 µm 54 %	6 2 µm	7 2 μm 56 %	2 µm 57 %	2 µm	2 µm	60
1 2 *	Object "Rectangular	Stack #2	Surface #1 (Rectangular Grating Interf	-	2 µm	3.5 µm	Steps 61	Step Siz	3 2 μm 52 %	53 % 94.348 %	2 μm 54 % 94.404 %	6 2 μm 55 %	7 2 μm 56 % 94.239 %	2 μm 57 % 94.015 %	2 µm 58 %	2 µm 59 %	60 92.716
1 2 *	Object "Rectangular	Stack #2	Surface #1 (Rectangular Grating Interf	-	2 µm	3.5 µm	Steps 61	Step Siz	3 2 μm 52 % 94.202 % 93.407 %	53 % 94.348 % 93.522 %	2 μm 54 % 94.404 % 93.566 %	6 2 μm 55 % 94.367 % 93.541 %	7 2 μm 56 % 94.239 % 93.449 %	2 μm 57 % 94.015 %	2 μm 58 % 93.69 % 93.065 %	2 μm 59 % 93.259 %	92.716 92.399
1 2 *	Object "Rectangular	Stack #2	Surface #1 (Rectangular Grating Interf	-	2 µm	3.5 µm	Steps 61	Step Siz	3 2 μm 52 % 94.202 % 93.407 %	53 % 94.348 % 93.522 %	2 μm 54 % 94.404 % 93.566 %	6 2 μm 55 % 94.367 % 93.541 %	7 2 μm 56 % 94.239 % 93.449 %	2 μm 57 % 94.015 % 93.291 %	2 μm 58 % 93.69 % 93.065 %	2 μm 59 % 93.259 % 92.768 %	60 92.716 92.399

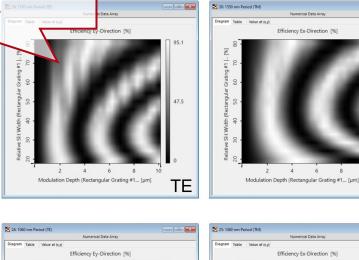
The *Parameter Run* is designed to help the optical engineer investigate the effect of varying parameters and manufacturing deviations. It is possible to define which parameters shall be varied and to either investigate all possible combinations by choosing *Scanning* mode or to only randomly pick a sample by choosing *Random* mode. As in this example only a few parameters are varied, *Scanning* mode was chosen.

Considerations on Grating Period Choice

Large period leads to higher diffraction orders in the substrate, and causes additional modulation in the efficiency.

1350nn

period=

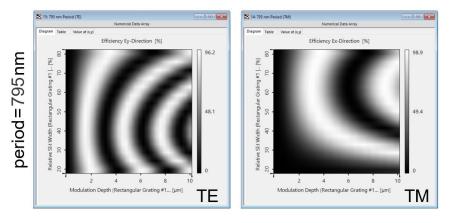

period = 1060 nm

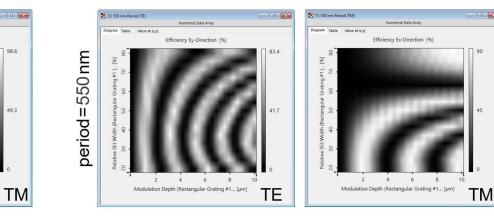
Modulation Depth (Rectangular Grating #1... [µm]

To ensure -1st transmission order exist (in air) and to avoid higher diffraction orders (in substrate), the grating period follows

$$\lambda/2 < d < 3\lambda/2n$$

where n is the refractive index of the substrate.

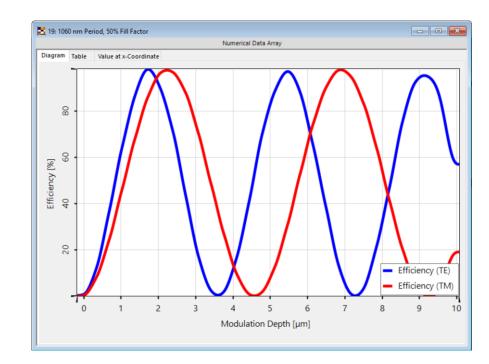

TE


TM

4

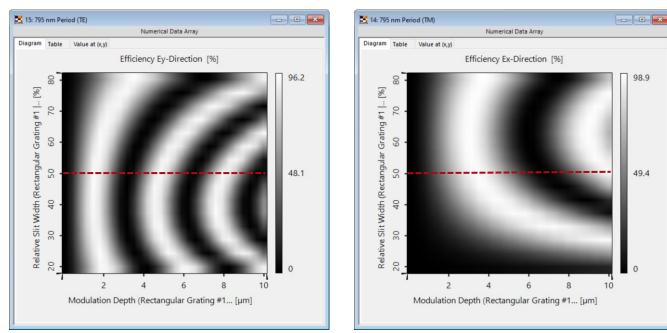
Modulation Depth (Rectangular Grating #1... [µm]

Similar analysis can be found in T. Clausnitzer, *et al.*, Proc. SPIE **5252**, 174-182 (2003).

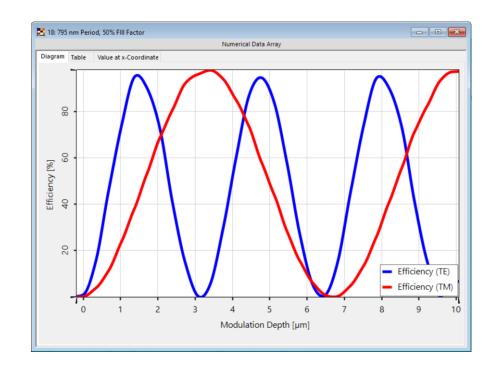

Polarization-Dependent Diffraction Property

24: 1060 nm Period (TE) 25: 1060 nm Period (TM) Numerical Data Array Numerical Data Array Diagram Table Value at (x,y) Diagram Table Value at (x,y) Efficiency Ey-Direction [%] Efficiency Ex-Direction [%] 98.6 80 8 8 Grating #1 |... 20 20 # Đ. 60 99 5 50 20 49.3 e Slit Width (Red 40 40 Ň Slit 80 8 Rel Re 0 0 10 10 Modulation Depth (Rectangular Grating #1... [µm] Modulation Depth (Rectangular Grating #1... [µm]

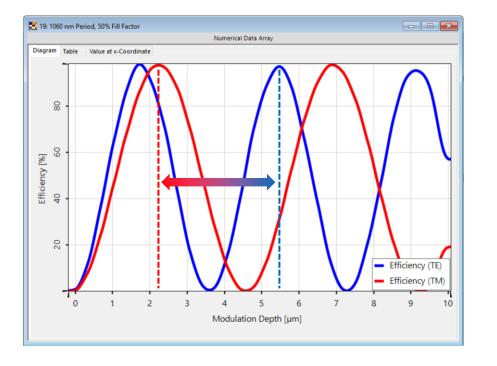
Value
0.1-10µm
1060nm
20-80%


diffraction efficiency analysis for given period 1060nm

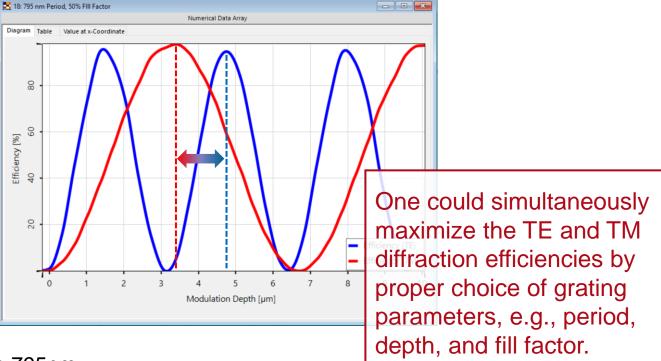
diffraction efficiencies vs. grating depth (grating period=1060nm, fill factor=50%)


Polarization-Dependent Diffraction Property

diffraction efficiency analysis for given period 795nm

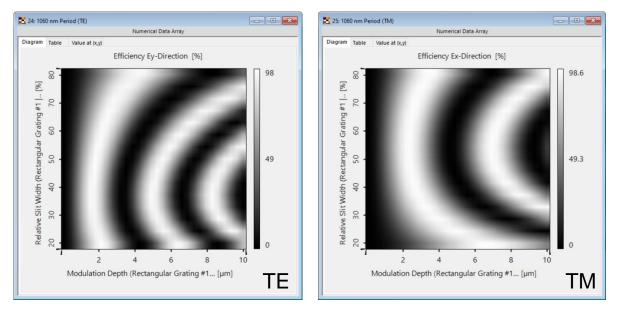

Parameter	Value
grating depth h	0.1-10µm
grating period d	795nm
fill factor f	20-80%

diffraction efficiencies vs. grating depth (grating period=795nm, fill factor=50%)



Polarization-Dependent Diffraction Property

diffraction efficiencies vs. grating depth (grating period=1060nm, fill factor=50%)

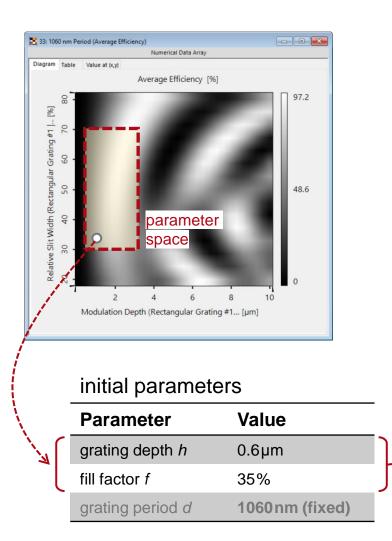

diffraction efficiencies vs. grating depth (grating period=**795nm**, fill factor=50%)

When grating period changes from 1060nm to 795nm

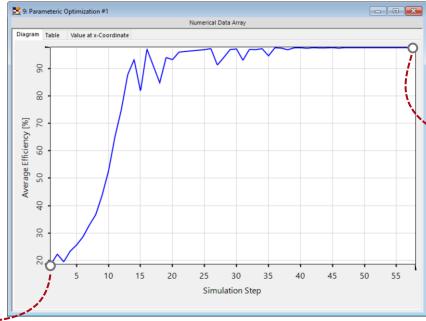
- the TE peak efficiency position shifts toward right i.e. larger grating depth.
- the TM peak efficiency position shifts toward left i.e. smaller grating depth.

We use a fixed period of 1060nm, with grating depth and fill factor as variables, and try to optimize the averaged diffraction efficiency.

The average diffraction efficiency can be defined as

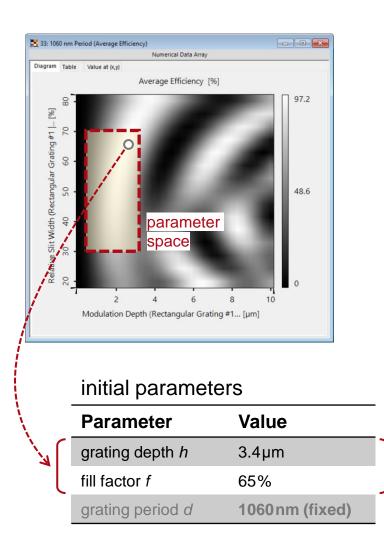

$$\eta^{\mathrm{avg}} = \frac{1}{2} \left(\eta^{\mathrm{TE}} + \eta^{\mathrm{TM}} \right) \,,$$

and it is to be maximized within the following parameter range

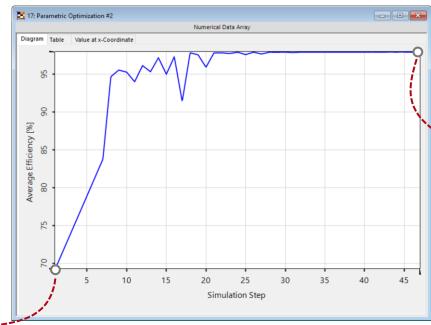

Parameter	Value Range
grating depth h	0.5-3.5µm
fill factor f	30-70%
grating period d	1060nm (fixed)

To keep a relatively low aspect ratio, we defined a reduced variation range of the grating depth and fill factor for design.

2D Parametric Optimization – Design #1


parametric optimization – downhill simplex

Diffraction efficiency in each optimization step is calculated using Fourier modal method (FMM, also known as RCWA).

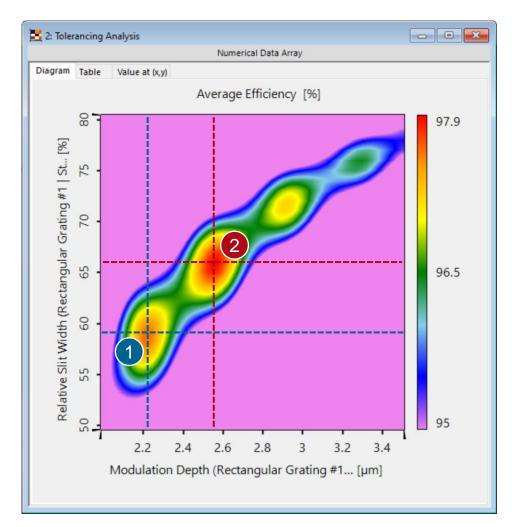

	optimized parameters								
	Parameter	Value							
	grating depth h	2.22µm							
1	fill factor f	59%							
	grating period d	1060nm (fixed)							

2D Parametric Optimization – Design #2

Note: To ensure that the chosen initial parameters do not lead to a local maximum we performed a second optimization with initial parameters from the other side of the parameter space.

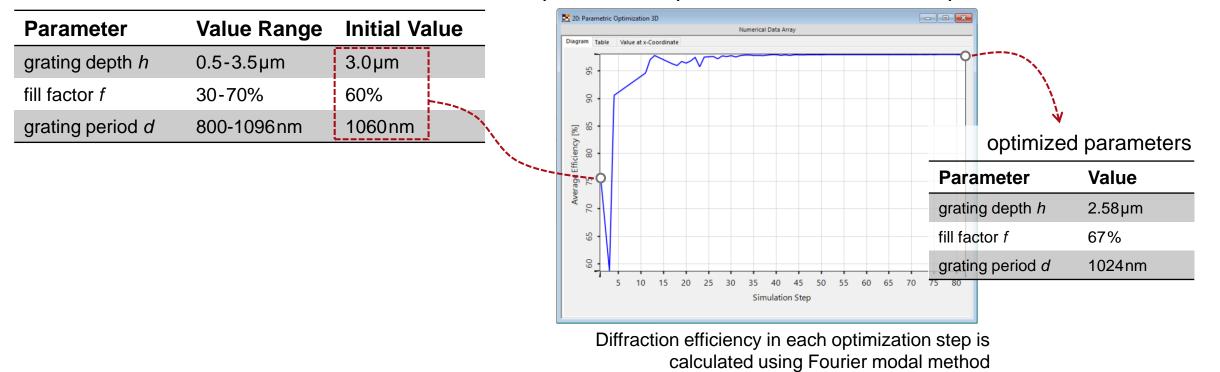
parametric optimization – downhill simplex

Diffraction efficiency in each optimization step is calculated using Fourier modal method (FMM, also known as RCWA).


optimized para	ameters
Parameter	Value
grating depth h	2.56µm
fill factor f	66%
grating period d	1060nm (fixed)
	_

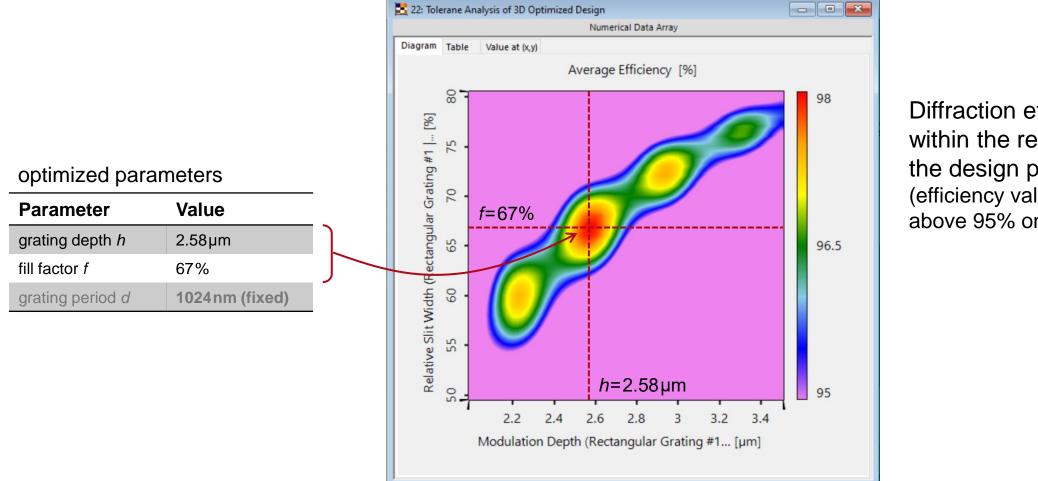
The same resulting parameters can be found in T. Clausnitzer, *et al.*, Proc. SPIE **5252**, 174-182 (2003).

Fabrication Tolerance Analysis


optimized paraweters #2 2ParameterValuegrating depth h $2.56 \mu m$ fill factor f66%grating period d1060nm (fixed)

optimized parameters #1 1				
Parameter	Value			
grating depth h	2.23µm			
fill factor f	59%			
grating period d	1060nm (fixed)			

Diffraction efficiency within the region around the design parameters (efficiency value clipped above 95% only)


3D Parametric Optimization with Varying Grating Period

parametric optimization – downhill simplex

(FMM, also known as RCWA).

Fabrication Tolerance Analysis

Diffraction efficiency within the region around the design parameters (efficiency value clipped above 95% only)

title	Analysis and Design of Highly Efficient Polarization Independent Transmission Gratings
document code	GRT.0015
document version	1.3
required packages	Grating Package
software version	2023.2 (Build 1.242)
category	Application Use Case
further reading	 <u>Ultra-Sparse Dielectric Nano-Wire Grid Polarizers</u> <u>Rigorous Analysis of Nanopillar Metasurface Building Block</u> <u>Parametric Optimization and Tolerance Analysis of Slanted Gratings</u> <u>Polarization Analyzer</u> <u>Configuration of Grating Structures by Using Interfaces</u>