

Grazing-Incidence Focusing Mirrors for X-Ray Beams

Abstract

Grazing-incidence reflective optics are widely used in X-ray beamlines, in particular Kirkpatrick-Baez (KB) elliptical mirror systems [A. Verhoeven, et al., Journal of Synchrotron Radiation 27.5 (2020): 1307-1319]. Focusing is accomplished by using two physically separated elliptical mirrors to focus the beam in two dimensions. The incoming Xrays can be focused by the system down to nanometer-scale spot size. Such system is modeled and simulated in VirtualLab Fusion and the focal field is calculated.

Modeling Task

fundamental Gaussian

Analytical Design of the Elliptical Mirror (1)

For the calculation of the elliptical surface height profile z(x) the following parameters are required:

- distance between source and the mirror center F_1
- distance between image/focus and the mirror center F_2
- grazing-incidence angle θ

1st elliptical mirror

- $F_1 = 50 \text{m}$
- $F_2 = 400 \text{ mm}$
- $\theta = 0.172^{\circ}$

2nd elliptical mirror

- $F_1 = 50.2 \text{m}$
- $F_2 = 200 \text{ mm}$
- $\theta = 0.172^{\circ}$

Analytical Design of the Elliptical Mirror (2)

- To calculate the height function z(x), two equations need to be considered.
 - elliptical equation

$$\frac{x^{\prime 2}}{a^2} + \frac{z^{\prime 2}}{b^2} = 1$$

coordinate transform

$$\begin{pmatrix} x'\\z' \end{pmatrix} = \begin{pmatrix} \cos\phi & -\sin\phi\\\sin\phi & \cos\phi \end{pmatrix} \begin{pmatrix} x\\z \end{pmatrix} + \begin{pmatrix} x_0\\z_0 \end{pmatrix}$$

• The final height function z(x) is

$$z(x) = (z' - z_0) \cos \phi - (x' - x_0) \sin \phi$$

with
$$\phi = \arctan\left(-\frac{b^2}{a^2}\frac{x_0}{z_0}\right)$$
, $x_0 = \frac{F_1^2 - F_2^2}{4c}$, and $z_0 = -b * \sqrt{1 - x_0^2/a^2}$

unknowns a, b, x' and z' in next slide

Analytical Design of the Elliptical Mirror (3)

• *a* and *b* can be calculated from F_1 , F_2 and θ

$$a = \frac{F_1 + F_2}{2}$$

$$c = \frac{1}{2}\sqrt{F_1^2 + F_2^2 - 2F_1F_2\cos(\pi - 2\theta)}$$

$$b = \sqrt{a^2 - c^2}$$

• parameter z' and x' are

$$z'(x') = -b\sqrt{1 - \frac{x'^2}{a^2}}, \qquad x'(x) = \frac{-n + \sqrt{n^2 - 4mt}}{2m}$$

with

$$m = \cos \phi^2 + \frac{b^2}{a^2} \sin \phi$$
$$n = -2\cos \phi \left(x + x_0 \cos \phi + z_0 \sin \phi\right)$$
$$t = (x + x_0 \cos \phi + z_0 \sin \phi)^2 - b^2 \sin^2 \phi$$

Energy Density & E-Field at Focal Plane

Peek into VirtualLab Fusion

Structure He	eight Discontinuities	Scaling	Coating	Periodization		
- Surface Spe	cification					
Algorithm	;					
Snippet fo	or Height Profile			🥒 Edit	Validity: 🕑	
○ Nume	rical Gradient Calculat	tion				
🖲 User-I	Defined Gradient Calcu	ulation		🥖 Edit	Validity: 🗸	
Parameters	;		/			
Angle					0.172°	
F1					50 m	
F2					400 mm	
			Source Coc	le Editor		
					Snippet Help Advanced Setting	
			50		INSERT YOUR CODE HER	
			51	********	****************	******
exible	definition	n of 🛛	52 53	dauble a	(54 . 52) / 2. // dist	
- 1 !			53		(F1 + F2) / 2;// dist Math.Sgrt(F1 * F1 + F	
ustomize	ed interfa	ace	55		lath.Sqrt(a * a - c *	
			56		/	
			57 58		(F1 * F1 - F2 * F2) -b * Math.Sqrt(1 - x	
			59	000010 20 -	-b Hachtsqrt(1 - X	o xo / (a a)/,
			60		o shift and rotate th	
			61		<pre>Math.Atan(-b * b *) Math.Gia(abi)</pre>	x0 / (a * a * z0));
			62 63		<pre>= Math.Sin(phi); = Math.Cos(phi);</pre>	
			64	double cos -	= Mach.cos(phi);	
			65	double m = b	o * b * sin * sin / (a * a) + cos * cos;
			66		-2 * cos * (x + x0 *	
			67		(x + x0 * cos + z0 *	
					<pre>(-n + Math.Sqrt(n * -b * Math.Sqrt(1 - x</pre>	
				GOUDIE 21 =	- nach syrc(1 - X	·

lit Curved Surface	: Component	<
21	Basal Positioning Isolated Positioning Position Information (Absolute)	
Coordinate Systems	Position this Element's Input Axes with Respect to Reference Element 4: Aperture Reference Output Coordinate System T Relative Distance on Axis Delta Z 0 mm	
E Structure	Lateral Shift Delta X 0 mm Delta Y 0 mm Inclination / Rotation 0	
Solver	Orientation Definition Type Spherical Angles ✓ (iii) Z-Axis Direction Definition Angle / Axis Value Theta (Spherical) ✓ 89.828° Phi (Spherical) ✓ -90°	
Channel Configuration	Rotation About Z-Axis Z-Axis Rotation Angle 90°	

convinient definition of position and orientation

Workflow in VirtualLab Fusion

- Set up input Gaussian field
 - Basic Source Models [Tutorial Video]
- Set the position and orientation of components
 - LPD II: Position and Orientation [Tutorial Video]
- Programmable the elliptical interface
 - How to Work with the Programmable Interface & Example (Spherical Surface) [Use Case]

mable Surface				×	
eight Discontinuities Scaling	g Coating	Periodization			
ecification					
IS					
IS					
for Height Profile		🥖 Edit	Validity: 🕑		
erical Gradient Calculation					
Defined Gradient Calculation		🥖 Edit	Validity: 🕑		
'S					
			0.172°		
			50 m		
			400 mm		
	Source Coo	le Editor			
	Source Code	Global Parameters	Snippet Help Advanced Setting	s	
	50 51 _		INSERT YOUR CODE HER		Aperture Diamete Aperture Diamete x Idouble 1
	52				y [double]
	53 54		F1 + F2) / 2;// dist		Angle [double]
	54 55 56			2 * F2 - 2 * F1 * F2 c);// distance from	F1 [double] F2 [double]
	57	double $x\theta =$	(F1 * F1 - F2 * F2)	/ (4 * c);// (x0, z0	
	58		-b * Math.Sqrt(1 - x		
	60	// now is to	shift and rotate th	e coordinate the mir	
	61	double phi =	Math.Atan(-b * b *	x0 / (a * a * z0));/	
	62	double sin =	Math.Sin(phi);		
	63	double cos =	Math.Cos(phi);		
	64				
	65		* b * sin * sin / (
	66		2 * cos * (x + x0 *		
	67			sin) * (x + x0 * cos	
		double x1 =	(-n + Math.Sqrt(n *	n - 4 * m * t)) / (2	
		double z1 =	-b * Math.Sqrt(1 - x	1 * x1 / (a * a));	

Edit Program

Surface Sp Algorithr Snippet

Num
 User
 Paramete
 Angle

F1 F2

VirtualLab Fusion Technologies

title	Grazing-Incidence Focusing Mirrors for X-Ray Beams	
document code	XRAY.0002	
document version	2.0	
software edition	VirtualLab Fusion Basic	
software version	2021.1 (Build 1.180)	
category	Application Use Case	
further reading	- Single Grating Interferometer for X-Ray Imaging	