

Vector Beam Generation with a SLM and a Common-Path Interferometer

Abstract

Cylindrical vector beams are found to be of help in different applications. In this example, following the work of X.-L. Wang, et al. in Opt. Lett. 32, 3549-3551 (2007), we build up a common-path interferometric setup. It consists of SLM, apertures, quarter-waveplates, grating combiner, and lenses in a 4f setup. Using this setup, we simulate the generation of cylindrical vector beams. By changing selected parameters for the amplitude transmission loaded on the SLM, we compare the difference in the results as well.

Modeling Task

How to generate vector beams with this setup and to check the polarization of the resulting field?

concept of the setup follows from X.-L. Wang, et al., Opt. Lett. 32, 3549-3551 (2007)

Modeling Task

concept of the setup follows from X.-L. Wang, et al., Opt. Lett. 32, 3549-3551 (2007)

Function of Spatial Light Modulator

Separate Modeling of ±1st Diffraction Orders

Resulting Vector Beam ($\varphi_0 = 0^\circ$)

Resulting Vector Beam (φ_0 =45°)

Resulting Vector Beam (φ_0 =90°)

Resulting Vector Beam (φ_0 =135°)

Resulting Vector Beams and Comparison

Peek into VirtualLab Fusion

flexible definition of arbitray transmission functions

Edit F	Programmable	Function						×		
(Coordinate Systems	Basic Parameter Definition	s Physical Paramete	rs Samplin	ng		Validity: 🕑			
	Position / Drientation	Parameters Gamma GratingPerio M	d			[[1 28 µm 1 🖨			
	Function	PhiO	Author: Site Zha Last Modified: The transmission 3551 (2007)	s missi ng Tuesday, S function fo	on Funct September 8, 2 bllows from the	tion fo 2020 e reference	or Vector Bea	am Genera al., Opt. Lett. 32,	tior 3549-	י אינ אינ י
			PARAMETER			DES	CRIPTION			
			Gamma	Strength of	of the amplitud	de modula	ation			
			GratingPeriod	Equivalen	t grating perio	od for a lir	near phase that is imp	posed on the SLI	М	
			М	Order of p	hase vortex					
			Phi0	Additiona	l comstant pha	ase term	in the polar coordinat	te		Chara
										Close

 \times

Fourier transform settings for diffraction consideration

Workflow in VirtualLab Fusion

- Specify or customize transmission functions
 - How to Work with the Programmable Function & Example (Cylindrical Lens) [Use Case]
- Set the Fourier transforms properly
 - Fourier Transform Settings Discussion at Examples [Use Case]
- Use idealized grating function in the modeling
 - <u>VirtualLab Fusion Technology</u> <u>Idealized Grating Functions</u> [Technology Whitepaper]

Edit Programmable	Function			
11-	Basic Parameters	Physical Parameters	Sampling	
Coordinate Systems	Definition / Edit			
1	Parameters			
Position /	Gamma			
Orientation	GratingPeriod			
B	М			
Function	Phi0			
$\rightarrow \square \rightarrow$				
Channel Configuration				

VirtualLab Fusion Technologies

title	Vector Beam Generation with a SLM and a Common-Path Interferometer
document code	IFO.0014
version	1.0
edition	VirtualLab Fusion Basic
software version	2020.2 (Build 2.22)
category	Application Use Case
further reading	 <u>Generation of Spatially Varying Polarization by Interference with</u> <u>Polarized Light</u>