Gaussian Beam Focused by a Thermal Lens
Thermal lens effect describes the inhomogeneity of refractive index of medium, which is induced by thermal gradient of a high-power incident laser beam. For a Gaussian beam with specified parameters, the refractive index is mathematically represented as a function of temperature and input power [W. Koechner, Appl. Opt. 9, 2548–2553 (1970)]. This use case shows the variation of the focal length of the thermal lens, as well as the focus beam diameter when the input power changes. This example is published in [H. Zhong, J. Opt. Soc. Am. A 35].
Modeling Task

task 1: evaluation of the variation of focal length with varying P_{in}

task 2: evaluation of the variation of beam size with varying P_{in}

Fundamental Gaussian mode

- **wavelength**: 632.8 nm
- **polarization**: linear in x-direction
- **waist radius**: 760 μm
- **input power P_{in}**: 8 to 20 kW

Thermal lens refractive index distribution

$$n(x, y) = n_0 - \frac{\eta P_{in}}{4K\pi d} \cdot \frac{\delta n}{\delta T} \cdot \frac{r^2}{r_0^2}$$

<table>
<thead>
<tr>
<th>$\delta n / \delta T$</th>
<th>7.3 \times 10$^{-6}$ \degreeC$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>0.05</td>
</tr>
<tr>
<td>K</td>
<td>11.1 W/(cm2)\degreeC$^{-1}$</td>
</tr>
<tr>
<td>r_0</td>
<td>0.31 cm</td>
</tr>
</tbody>
</table>

Input parameters

- $d = 7.5$ cm
- $\tau_0 = 0.31$ cm
- $\frac{\delta n}{\delta T} = 7.3 \times 10^{-6} \degreeC^{-1}$
- $\eta = 0.05$
- $K = 11.1$ W/(cm2)\degreeC$^{-1}$
Results

- When input power P_{in} increases, thermal lens effect becomes stronger and the focal length reduces;
- When NA of thermal lens increases, beam diameter in focal plane reduces.
Peek into VirtualLab Fusion

customizable graded-index media

detector for Gaussian beam parameters
Workflow in VirtualLab Fusion

• Set up input Gaussian field
 - Basic Source Models [Tutorial Video]

• Customize the graded-index medium
 - How to Work with the Programmable Medium and Example (Thermal Lens) [Use Case]

• Use the Parameter Run
 - Usage of Parameter Run [Use Case]
VirtualLab Fusion Technologies

beam waist thermal lens focal plane

Field Solver

1. crystals & anisotropic components
2. diffractive, Fresnel, meta lenses
 HOE, CGH, DOE

- waveguides & fibers
- scatterer
- diffusers
- diffractive beam splitters
- SLM & adaptive components
- micro lens & freeform arrays
- free space
- prisms, plates, cubes, ...
- lenses & freeforms
- apertures & boundaries
- gratings

idealized component
Document Information

<table>
<thead>
<tr>
<th>title</th>
<th>Gaussian Beam Focused by a Thermal Lens</th>
</tr>
</thead>
<tbody>
<tr>
<td>document code</td>
<td>GRIN.0004</td>
</tr>
<tr>
<td>version</td>
<td>1.1</td>
</tr>
<tr>
<td>toolbox(es)</td>
<td>Starter Toolbox</td>
</tr>
<tr>
<td>VL version used for simulations</td>
<td>VirtualLab Fusion Summer Release 2019 (7.6.1.18)</td>
</tr>
<tr>
<td>category</td>
<td>Application Use Case</td>
</tr>
</tbody>
</table>
| further reading | - Construction and Modeling of a Graded-Index Lens
- Modeling of Graded-Index (GRIN) Multimode Fiber |