

Focusing Electromagnetic Fields with Cascaded Circular Apertures

Abstract

Diffraction from apertures – often understood as a detrimental effect that makes the beam size larger – can be used to focus light in proper configurations. Following the theory of M. De, et al., Appl. Opt. 7, 483-488 (1968), and J. W. Y. Lit, et al., J. Opt. Soc. Am. 59, 559-567 (1969), we demonstrate such effects in VirtualLab Fusion with its flexible Fourier transform settings. In the following two examples, we show the field along z axis, analyze it on the focal plane, and compare it with the reference.

Modeling Task – Three Cascaded Circular Apertures

system configuration, including aperture sizes and distances, based on M. De, *et al.*, Appl. Opt. 7, 483-488 (1968), and J. W. Y. Lit, *et al.*, J. Opt. Soc. Am. 59, 559-567 (1969)

Diffraction from Three Cascaded Circular Apertures

Diffraction from Three Cascaded Circular Apertures

Diffraction from Three Cascaded Circular Apertures

Modeling Task – Eleven Cascaded Circular Apertures

How does the pattern look like after eleven cascade apertures?

Aperture Sizes and Locations

aperture index	diameter	distance between neig	ghbour apertures
C ₋₅	431 mm	d_5	176mm
C_4	454 mm	d_4	193mm
C ₋₃	473mm	d_3	207 mm
C ₋₂	488mm	d_2	217mm
C ₋₁	497 mm	d_ ₋₁	222mm
C ₀	500mm	d ₀	222mm
C ₊₁	497 mm	d ₊₁	217mm
C ₊₂	488mm	d ₊₂	207 mm
C ₊₃	473mm	d ₊₃	193mm
C ₊₄	454 mm	d ₊₄	176mm
C ₊₅	431 mm	based on De <i>et al</i> . Appl. Opt.	7, 483-488 (1968)

Results Energy Density in Detector and *xz* **Plane**

Results Energy Density in Detector and *xz* **Plane**

Results Energy Density in Detector and *xz* **Plane**

Peek into VirtualLab Fusion

for diffraction consideration

Workflow in VirtualLab Fusion

- Set the Fourier transforms properly
- Select proper detector for field visualization
 - Usage of Cameral Detector [Use Case]
- Use Parameter Run to scan along z axis
 - Usage of Parameter Run [Use Case]

it Aperture		
Ĩ.	Customized Fourier Transform Selection: C	Component
Coordinate	Fourier Transform	Inverse Fourier Transform
Systems	Fast Fourier Transform	Fast Fourier Transform
ten	Semi-Analytical Fourier Transform	Semi-Analytical Fourier Transform
k.	Pointwise Fourier Transform	Pointwise Fourier Transform
Position /	Use Spherical Phase Only	Use Spherical Phase Only
	Enforce Pointwise Fourier Transform in Learn more about Fourier transforms. Customized Fourier Transform Selection: S	f Numerical Effort is Too High 🚹
	- Fourier Transform	Inverse Fourier Transform
\rightarrow	Fast Fourier Transform	Fast Fourier Transform
↔		

VirtualLab Fusion Technologies

title	Focusing Electromagnetic Fields with Cascaded Circular Apertures
document code	MISC.0081
version	1.0
edition	VirtualLab Fusion Basic
software version	2020.1 (Build 1.202)
category	Application Use Case
further reading	 Pinhole Modeling in a Low-Fresnel-Number System Diffraction Patterns behind Different Apertures