

Focusing of Femtosecond Pulse by Using a High-NA Off-Axis Parabolic Mirror

Abstract

To fully characterize the focusing behavior of an ultrashort pulse, different electromagnetic properties must be considered. That includes both spatial distribution, temporal / spectral distribution, vectorial effect, and the possible coupling amongst all the above. As an example, the focusing process of a 10-fs pulse by using a high-NA parabolic mirror is modeled in VirtualLab Fusion, and both the spatial and temporal behaviors are investigated.

Modeling Task

How to calculate output pulse in the focal plane, including the spectral / temporal profile and the spatial distribution of the focal spot for all vectorial field components?

Results

The linearly polarized input pulse has an E_z component with almost zero amplitude.

Results

The slight change in the output spectrum is due to different focus size of different wavelength.

Non-zero E_z component appears due to polarization crosstalk in high-NA focusing situation.

Results

Document Information

title	Focusing of Femtosecond Pulse by Using a High-NA Off-Axis Parabolic Mirror
version	1.1
VL version used for simulations	7.4.0.47
category	Application Use Case