Double-Helix PSF for 3D Imaging Microscopy

Abstract

The Double-Helix (DH) PSF engineering provides a high resolution in the longitudinal direction for 3D imaging. It can be produced by adding a phase mask with vortices in the pupil plane [Ginni Grover et al., Opt. Exp. 2012]. VirtualLab Fusion provides a fast and convenient way to calculate the DH PSFs for small defocuses of a high-NA microscopy system. This use case demonstrates the DH-PSFs have obvious changes with a defocus of $\sim 130 \mathrm{~nm}$.

Modeling Task

Building the System in VirtualLab Fusion

System Building Blocks

Solvers for Components

Geometric-Optics Simulations

by Ray Tracing

Results: Ray Tracing

Q. Q

Fast Physical-Optics Simulations

by Field Tracing

Double Helix PSFs at Image Plane for Different Defocuses

Document Information

title	Double-Helix PSF for 3D Imaging Microscopy
document code	MIC. 0019
version	1.0
edition	VirtualLab Fusion Basic
software version	2020.2 (Build 1.116)
category	Application Use Case
	$-\frac{\text { Debye-Wolf Integral Calculator }}{}$
further reading	$-\frac{\text { Analyzing High-NA Objective Lens }}{}$
	Criterion

