

Design and Analysis of Intraocular Diffractive Lens

Abstract

Multifocal intraocular lens implantation is now widely applied for the treatment of cataracts. As one of its advantages, the diffractive intraocular lens provides good far and near vision for the patients. Such lenses are usually designed e.g., using Binary 2 surfaces in Zemax OpticStudio[®]. In this example, we demonstrate how to import the initial designs into VirtualLab Fusion and model the lens system with the actual binary structures taken into account. The performance of the diffractive lens is further investigated by varying the height of binary structures.

Design Task

Each configuration of the two intraocular lens scenarios requires a certain wavefront phase response function.

$$\Delta\psi(\rho)=m\Delta\psi(\rho)$$

Where m = 0 for the far view scenario and m = 1 for the near view scenario.

How to design and analyze the diffractive lens providing two different wavefront phase responses for the two configurations?

Simulation & Setup: Single Platform Interoperability

Single-Platform Interoperability of Modeling Techniques

Light will encounter and interact with different components as it propagates through the system. A suitable and flexible model is required that provides a good compromise between accuracy and speed for each of these elements of the system:

(1) source

- 2 cornea and pupil of human eye
- ③ intraocular diffractive lens
- 4 free-space propagation
- **(5)** detector

Connected Modeling Techniques: Cornea and Pupil of Eye

source cornea and pupil of human eye intraocular diffractive lens free-space propagation

5 detector

Available modeling techniques for lens systems :

Methods	Preconditions	Accuracy	Speed	Comments	
Functional Approach	-	low	very High	no Fresnel losses	
Thin Element Approximation (TEA)	smallest structure > $\sim 10\lambda$	high	high	inaccurate for larger NA and thick elements; x- domain	
	smallest structure < $\sim 5\lambda$	low	high		
Local Planar Interface Approximation (LPIA)	surface not in focal region of beam	high	high	local application of S matrix; x-domain	
	otherwise	low	high		

Since considering the cornea and pupil of the eye (and the aqueous humor in between) as a thin element would result in a large inaccuracy, the Local Linear Interface Approximation (LPIA) is selected to ensure an appropriate accuracy.

Lens System Component

The Lens System Component allows the user to easily define a component consisting of an alternating sequence of smooth surfaces and homogeneous, isotropic media. For both interfaces and materials, you can choose readymade entries from the built-in catalogs or customize your own for maximum flexibility.

Import of Optical System from OpticStudio

The configuration of the optical setup as well as the design of the wavefront phase response by a Binary 2 surface was generated in Zemax OpticStudio[®].*

VirtualLab Fusion provides the capability to import the optical setups and merge them in a single optical setup configuration.

⁸ * Note: the design of the wavefront phase response can be achieved in VirtualLab Fusion as well.

Connected Modeling Techniques: Intraocular Diffractive Lens

Available modeling techniques for micro structured gratings:

Methods	Preconditions	Accuracy	Speed	Comments	
Fourier Modal Method (FMM)	period < ~ $(5\lambda \times 5\lambda)$	very high	high	rigorous solution; fast for structures and periods similar to the wavelength; more demanding for larger periods; k-domain	
	period > ~ (15λ × 15λ)	very high	slow		
Thin Grating Approximation (TGA)	smallest structure > $\sim 10\lambda$	high	high	accurate for shallow structures (thickness ~λ); non-paraxial incidence increases inaccuracy; x-domain	
	smallest structure < ~5λ	low	high		
Local Linear Grating Approximation (LLGA)	-	high	high	local application of either FMM or TGA according to local period	

By design, the local period of a diffractive lens is not constant. The Local Linear Grating **Approximation (LLGA)** algorithm automatically determines the local period at each point and applies TEA or FMM accordingly, providing an optimal combination of speed and accuracy.

Diffractive Lens Component

The intraocular diffractive lens is modeled by the *Diffractive Lens* component, which allows for the definition of a specific wavefront phase response, which then also can be translated in a real structure with a height profile.

The propagation through the real diffractive lens is then modeled by the *Local Linear Grating Approximation (LLGA)*. For further information, please see <u>Diffractive Lens</u> <u>Component</u>.

Structure Design: Diffractive Lens Profile Height

The structure profile of the diffractive lens is calculated by Thin Element Approximation (TEA) according to the defined wavefront phase response:

$$h^{\rm DOE}(\rho) = \beta \frac{\lambda}{2\pi\Delta n} \Delta \psi(\rho)^{\rm DOE}$$

with a scaling factor β to modulate the height and control the efficiency of the diffraction orders.

TEA directly provides a very

high efficiency for the 1st order

Structure Design: Diffractive Lens Profile Height

A quantization of the structure with 2 height levels is chosen because the binary diffractive lens

- is beneficial for manufacturing (costs, easier to fabricate);
- gives a better control of the efficiencies, especially for the 0th and 1st order using the height variation approach.

Connected Modeling Techniques: Free-Space Propagation

5 detecto

Available modeling techniques for free-space propagation:

Methods	Preconditions	Accuracy	Speed	Comments
Rayleigh Sommerfeld Integral	none	high	low	rigorous solution
Fourier Domain Techniques	None	high	high	rigorous mathematical reformulation of RS integral
Fresnel Integral	paraxial	high	high	assumes paraxial light;
	non-paraxial	low	high	moderate speed for very short distances
Geometric Propagation	low diffraction	high	very high	neglects diffraction
	otherwise	low	very high	effects

Diffractive effects are a major part of the simulation when propagating into the focus. Hence, we choose **Fourier Domain Techniques** as simulation technique.

Detector

source
 eye pupil
 intraocular diffractive len
 free-space propagation

6 detector

VirtualLab Fusions flexible Universal Detector combined with convenient tools to define regions allows for the calculation of many different physical values, such as illuminance or luminous flux.

Simulation Results

Far View: Conformity of OpticStudio Import

Near View: Conformity of OpticStudio Import

Structure Design: Height Scaling Factor of 1.00

Structure Design: Height Scaling Factor of 0.75

Structure Design: Height Scaling Factor of 0.50

Structure Design: Determine the Optimum Scaling Factor

- The human eye is a quite complex organ with many different cells contributing to its ability of sight, which also differ in shape and size.
- Therefore, for sake of simplicity, we define a region of 10 µm around the center in which the luminous flux is optimized.

Optimum of the scaling factor for equivalent peak luminous flux for both foci (near and far view).

Structure Design: Optimized Height Factor of 0.60

Scotopic Perception

Photometric physical values (such as the illuminance or luminous flux) can be defined in two different ways, namely photopic and scotopic. While we have used the photopic definition so far – since it describes the vision of the eye under normal daylight conditions it might also be of interest to see how the lens performs under scotopic - meaning nighttime conditions.

In this example, the design provides similar, but slightly different results under scotopic vision.

far view scenario

35: Illuminance - Far View Scenario 🛃 34: Illuminance - Near View Scenario Numerical Data Array (Equidistant) Numerical Data Array (Equidistant) Diagram Table Value at (x,y) Diagram Table Value at (x,y) Illuminance (Scotopic) [1E2 lx] Illuminance (Scotopic) [1E2 lx] 2.7 10 10 ŝ S [mu] Y [mu] Y 1.3 0 0 ŝ ŝ -10 -10 0 -10 -5 0 5 10 -10 -5 0 5 10 X [µm] X [µm] $(3.33 \cdot 10^{-9}$ lumen in region) $(2.84 \cdot 10^{-9}$ lumen in region)

near view scenario

4.5

2.2

Illustration of Focus Development from Near to Far Region

²⁴ ** shown quantity: illuminace with equal scaling*

title	Design and Analysis of Intraocular Diffractive Lens
document code	DFL.0001
version	2.2
edition	VirtualLab Fusion Advanced
toolbox(es)	Diffractive Optics Toolbox Gold
software version	2023.1 (Build 1.242)
category	Application Use Case
further reading	 Modeling of a Hybrid Eyepiece with Diffractive Lens Surface for Chromatic Aberration Correction Import Optical Systems from Zemax OpticStudio[®]