Czerny-Turner Setup
Czerny-Turner setups are widely used to measure the spectral information of light sources. Typically, a parabolic mirror is used to collimate the source first, and then a diffraction grating will spatially separate the wavelengths. A second mirror can be employed to refocus each of the now separate wavelength components. By positioning an exit aperture properly, a specific wavelength can be selected. A simulation of the complete Czerny-Turner setup, including real reflective mirrors and a diffractive grating is presented in this use case using, first, a continuous spectrum, and then the discrete example of the sodium doublet.
Modeling Task

spherical wave
- homogeneous spectrum from 512nm to 552nm
- aperture: 500nm x 2mm

sawtooth grating
- period: 833nm
- modulation depth: 282nm

detector
- energy density

aperture

parabolic mirror
- focal length: 100mm
To model light with a homogeneous spectrum, generate a *Homogeneous Spectrum* through the *Sources* tab and use it as the spectral composition of the source. Keep in mind that each spectrum will consist of discrete sampling points. Dependent on the particular optical system and the intended simulation a finer sampling of the spectral range might be necessary to model the desired effects accurately.
Alternatively, a Parameter Run can be applied instead, to vary the wavelength in a specific range. This technique benefits from the option offered by the Parameter Run to retroactively add more wavelength samples to the spectrum, without the need to repeat the simulation with previous ones.
Grating structures, such as a sawtooth or blazed grating, are modeled by defining appropriate surfaces and media in a Stack. This Stack can then be imported into a variety of different components, depending on the intended use. In this case we investigate the overall wavelength dependency in a grating-specific optical setup, which can be accessed by Start, Gratings. Afterwards the Stack can be loaded into a Grating Component in a normal Optical Setup to simulate the entire system.
Parameter Coupling

The Parameter Coupling feature can be used to link parameters of the system, so that a certain relationship between them is maintained. In this use case we want to adjust the angle of the grating automatically, depending on the which wavelength is investigated.

More information about the Parameter Coupling under:

耦合参数在VirtualLab Fusion
Summary – Components

<table>
<thead>
<tr>
<th>… of Optical System</th>
<th>… in VirtualLab Fusion</th>
<th>Model/Solver/Detected Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. source</td>
<td>Spherical Wave (with Homogeneous Power Spectrum)</td>
<td>point source (with homogeneous spectrum)</td>
</tr>
<tr>
<td>2. aperture</td>
<td>Aperture</td>
<td>transmission function</td>
</tr>
<tr>
<td>3. parabolic mirror</td>
<td>Parabolic Mirror Component</td>
<td>Linear Plane Interface Approximation (LPIA)</td>
</tr>
<tr>
<td>4. sawtooth grating</td>
<td>Grating Component</td>
<td>FMM/RCWA</td>
</tr>
<tr>
<td>5. detector</td>
<td>Camera Detector</td>
<td>energy density measurement</td>
</tr>
</tbody>
</table>
System Impressions

3D Ray Tracing visualization

field visualization at detector plane in real and false color (without exit aperture)
The FMM (“Fourier Modal method”) algorithm calculates the diffraction efficiency of the sawtooth grating rigorously. As the setup translates wavelength into spatial information, the same behavior is expected of the energy density distribution at the detector plane.

Note: to demonstrate the wavelength depended behavior of the efficiency, the aperture has been removed for this experiment.
Automatic Rotation of Grating

By using Parameter Coupling, the system will automatically adjust to facilitate the detection of the intended wavelength.

- Set grating orientation as reference @ 532nm
- Grating rotation around y by -1.55° to select 492nm
- Grating rotation around y by 1.55° to select 572nm
Application Example: Sodium Doublet Resolution

When propagating into the focus of the second mirror, the separation between the two wavelengths can be visualized. Depending on the simulation settings, diffraction effects caused by the apertures can be included in the simulation. For more details see:

Resolving Sodium Doublet by Using a Czerny-Turner Setup
<table>
<thead>
<tr>
<th>title</th>
<th>Czerny-Turner Setup</th>
</tr>
</thead>
<tbody>
<tr>
<td>document code</td>
<td>GRT.0030</td>
</tr>
<tr>
<td>document version</td>
<td>2.0</td>
</tr>
<tr>
<td>software edition</td>
<td>VirtualLab Fusion Advanced</td>
</tr>
<tr>
<td>software version</td>
<td>2021.1 (Build 1.180)</td>
</tr>
<tr>
<td>category</td>
<td>Application Use Case</td>
</tr>
</tbody>
</table>

further reading

- Grating Component
- Coherence Measurement Using Michelson Interferometer and Fourier Transform Spectroscopy
- Resolving Sodium Doublet by Using a Czerny-Turner Setup