

Analysis of CMOS Sensors with Microlens Array

Abstract

In recent decades, the pixel size of CMOS sensors has scaled down from ~10µm to $\sim 2 \mu m$ or even smaller. By decreasing the pixel size, higher spatial resolution can be achieved. At the same time, it brings into question the functionality of the microlenses sitting on top of each pixel. In this example, we investigate the performance of a CMOS sensor with pixel size equal to or below $2\mu m$. The rigorous FMM/RCWA is employed for the simulation to check the effectiveness of the microlenses.

Modeling Task

geometry parameters adapted from Y. Huo, et al., Opt. Express 18, 5861-5872 (2010)

Simulation & Setup: Single Platform Interoperability

Single-Platform Interoperability of Modeling Techniques

Striking the correct accuracy-speed balance in a simulation requires using a different modeling technique for each part of the system that can take the relevant effects into account without overkill.

- plane-wave source
 microlens array
 color filter (absorbing media)
- propagation through substrate
- **(5)** detection

Connected Modeling Techniques: Microlens

plane-wave source
 microlens array
 color filter (absorbing material)
 propagation through substrate
 detector

Available modeling techniques for microlens arrays:

Methods	Preconditions	Accuracy	Speed	Comments
Fourier Modal Method (FMM)	none	Very High	High	small periods
Thin Element Approximation	Large periods & features, thin	High	Very High	Thickness about wavelength; period & features larger than about ten wavelengths
Local Planar Interface Approximation	Surface not in focal region of beam, large features	High	Very High	Local application of S matrix; LPIA; x-domain

As a rigorous eigenmode solver, the Fourier modal method (also known as rigorous coupled wave analysis, RCWA) provides a very high accuracy. Due to the relatively small lenses and distances in this setup, the calculation speed is fast. We also take advantage of the periodic boundary conditions in this inherently periodic structure. FMM is then the best compromise of accuracy and speed.

Connected Modeling Techniques: Color Filter

plane-wave source
 microlens array
 color filter (absorbing material)
 propagation through substrate
 detector

Available modeling techniques for periodic micro and nano structures:

Methods	Preconditions	Accuracy	Speed	Comments	
Fourier Modal Method (FMM)	none	Very High	High	small periods	
Thin Element Approximation	Large periods & features, thin	High	Very High	Thickness about wavelength; period & features larger than about ten wavelengths	

The same argumentation is true for the color filter behind the microlens array.

Connected Modeling Techniques: Programmable Medium

The special shape of the color filter layer can be represented by a programmable medium, which allows for the custom specification of the refractive index in all dimensions (x,y,z).

Connected Modeling Techniques: Free-Space Propagation

- plane-wave source
- microlens array
- 3 color filter (absorbing material)
- 4 propagation through substrate
- 5 detecto

Available modeling techniques for free-space propagation:

Methods	Preconditions	Accuracy	Speed	Comments
Rayleigh Sommerfeld Integral	None	Very High	Low	Rigorous solution
Fourier Domain Techniques	None	High	High	Rigorous mathematical reformulation of RS integral
Fresnel Integral	Paraxial	High	High	Assumes paraxial light;
	Non-paraxial	Low	High	moderate speed for very short distances
Geometric Propagation	Low diffraction	High	Very high	Naglasta diffraction offects
	Otherwise	Low	Very high	
Fourier Modal Method (FMM)	none	Very High	High	small periods, includes evanescent modes

Although this is not a typical choice for free-space propagation, we again take advantage here of the periodic nature of the system and, considering also the evanescent modes, we continue using FMM for this step. The fact that the propagation distance is short, in addition, helps support this choice.

Connected Modeling Techniques: Stacks

Stacks are a convenient way to configure structures with small feature sizes and distances in VirtualLab Fusion. In these containers, multiple types of surfaces and media can be included to represent the various aspects of the structure. Please note that the same modeling technique is used for the entire stack.

- 2 microlens array
 3 color filter (absorbing media)
 4 substrate
- 5 detection

Field Inside Component Analyzer: FMM

To visualize the actual field propagation inside a *Stack* and illustrating its evolution, the *Field Inside Component Analyzer: FMM* allows the user to calculate a 1D cross section of the field at various steps inside a given component and to display the aggregated results in 2D. More information under:

Field Inside Component Analyzer: FMM

Simulation Results

Microlens for Pixel Size of 2.0 µm (Simulation in x-z Plane)

<section-header>

700 nm

× 2

FMM/RCWA simulation (x-z plane)

Microlens for Pixel Size of 1.8µm (Simulation in x-z Plane)

FMM/RCWA simulation (x-z plane)

radius 1.64 µm

(by ray-optics)

Microlens for Pixel Size of 1.6 µm (Simulation in x-z Plane)

FMM/RCWA simulation (x-z plane)

3D Simulation and Comparison of Results

3D Simulation and Comparison of Results

title	Analysis of CMOS Sensors with Microlens Array
document code	GRT.0026
version	2.1
edition	VirtualLab Fusion Advanced
software version	2023.1 (Build 1.556)
category	Application Use Case
further reading	 <u>Ultra-Sparse Dielectric Nano-Wire Grid Polarizers</u> <u>Configuration of Grating Structures by Using Interfaces</u> <u>Configuration of Grating Structures by Using Special Media</u>