

Modeling and Design of Blazed Metagratings

Abstract

Metagratings, which are usually composed of nano pillars, start to draw more and more attention for different applications. They are known for their high diffraction efficiency in non-paraxial cases and insensitivity to polarization. In this example, we construct a blazed metagrating using square nano pillars, following the work of P. Lalanne, et al., and demonstrate the optimization of metagratings in VirtualLab Fusion. Particularly, we evaluate the polarizationdependent efficiency in the simulation.

Modeling Task

How to design a metagrating with optimized 1st order diffraction efficiency, by

- selecting the proper unit cells / building blocks, and
- arranging them and optimize their positions within one grating period?

grating parameters and design method follows P. Lalanne, et al., Opt. Lett. 23, 1081-1083 (1998)

Unit Cell Analysis (Index Matched)

First, we assume a periodic replication of the same square pillars and vary the **pillar diameter** (*D*).

transmission amplitude/phase vs. pillar diameter (@633nm)

Unit Cell Analysis (Index Matched)

Choosing Unit Cell (TiO₂-Glass Interface)

In practice, the substrate is in a different material as the pillars. Here, we consider glass substrate.

transmission amplitude/phase vs. pillar diameter (@633nm)

Selection of Pillar Diameters

In practice, the substrate is in a different material as the pillars. Here, we consider glass substrate.

Selection of pillar diameters follows from P. Lalanne, *et al.*, Opt. Lett. 23, 1081-1083 (1998)

Blazed Metagrating Construction

Selection of pillar diameters follows from P. Lalanne, *et al.*, Opt. Lett. 23, 1081-1083 (1998)

Performance Analysis of Initial Design

grating performance evaluation

	Efficiency
y-polarization (TE)	80.2%
<i>x</i> -polarization (TM)	74.2%
average	77.2%

The same average efficiency value is reported in P. Lalanne, *et al.*, Opt. Lett. 23, 1081-1083 (1998)

	#1	#2	#3	#4	#5
D	118nm	179nm	201 nm	247nm	293nm
f=D/u	0.31	0.47	0.53	0.65	0.77
$\Delta\psi$	0.20π	0.69π	0.98π	1.40 <i>π</i>	1.73π

Selection of pillar diameters follows from P. Lalanne, *et al.*, Opt. Lett. 23, 1081-1083 (1998)

Visualization of Transmitted Field

Visualization of Transmitted Field

5µm behind interface (evanescent waves damped)

Further Optimization of Metagrating

Performance Analysis of Optimized Design

optir	nized grating	
	Efficiency	
y-polarization (TE)	90.0%	After optimization the
x-polarization (TM)	89.6%	resulting grating shows ov
average	89.8%	10 percentage points
		increase in the 1 st order diffraction efficiency.

shows over

initial g	initial grating design		
	Efficiency		
y-polarization (TE)	80.2%		
x-polarization (TM)	74.2%		
average	77.2%		

Peek into VirtualLab Fusion

flexible distribution of unit cells / pillars

Workflow in VirtualLab Fusion

- Analyze metasurface unit cell
 - <u>Rigorous Analysis of Nanopillar Metasurface</u> <u>Building Block</u> [Use Case]
- Construct metagratings
 - <u>Metagrating Construction Discussion at Examples</u> [Use Case]
- Analyze grating diffraction efficiency
 - Grating Order Analyzer [Use Case]
- Parametric optimization of grating structure
 - Parametric Optimization [Tutorial Video]

VirtualLab Fusion Technologies

title	Modeling and Design of Blazed Metagratings
document code	GRT.0020
version	1.1
edition	VirtualLab Fusion Advanced
software version	2021.1 (Build 1.180)
category	Application Use Case
further reading	 Rigorous Analysis of Nanopillar Metasurface Building Block Design of 2D Non-Paraxial Beam-Splitting Metagrating Analysis and Design of Highly Efficient Polarization Independent Transmission Gratings