

Bessel Beam Generation behind a Fiber with a Holographic Optical Element

Abstract

Bessel beams, due to their extended depth of focus, are found useful in many applications. In this example, we show how to generate Bessel beam from the output of a single-mode fiber. Instead of the typical approach with a collimation lens and an axicon, we designed a holographic optical element (HOE) that incorporates both the lens and axicon functions in one. Such an optical setup is built in VirtualLab Fusion. We check the function of the HOE and examine the evolution of the field behind the HOE.

Modeling Task

Function of the HOE

Field at Different Locations Behind HOE

Intensity Distribution on X-Z Section

Peek into VirtualLab Fusion

HOE component with flexible function definition

Workflow in VirtualLab Fusion

- Define customized HOE function via programming
- Set the Fourier transforms properly
 - Fourier Transform Settings Discussion at Examples [Use Case]
- Use Parameter Run to check field evolution
 - Usage of the Parameter Run [Use Case]

VirtualLab Fusion Technologies

Document Information

title	Bessel Beam Generation behind a Fiber with a Holographic Optical Element
document code	MISC.0088
version	1.0
edition	VirtualLab Fusion Basic, Diffractive Optics Toolbox Gold
software version	2020.1 (Build 3.4)
category	Application Use Case
further reading	- Modeling of Bessel Beam Generation from Axicon with Round Tip