Modeling of Bessel Beam Generation from Axicon with Round Tip
Bessel beams, due to their non-diffracting property, are drawing attentions for different applications. They are typically generated from axicons. An ideal axicon with infinite tip does not exist, and, in practice, an axicon comes with a rounded tip. In this example, we investigate the effect of the round tip on the generated Bessel beams, following the research work in [O. Brzobohatý, et al., Opt. Express 16, 12688-12700 (2008)]. Particularly, we simulate beam evolution along z and compare the results.
Modeling Task

- input field
 - fundamental Gaussian
 - wavelength 1064 nm
 - waist radius 2140 µm

- round-tip axicon
 - refractive index $n=1.50669$
 - apex angle $\tau=170^\circ$
 - round-tip parameter $a=10, 30, 60 \mu m$
 - modeled as a transmission function

How does the generated Bessel beam evolve along z, especially with respect to different round tips?

$$h(\rho) = -\sqrt{a^2 + \frac{\rho^2}{\tan^2(\tau/2)}}$$
Bessel Beam at a Fixed Z-Position

- A round-tip axicon with:
 - $n = 1.50669$
 - Apex angle $\tau = 170^\circ$
 - $a = 10, 30, 60\,\mu m$

- Diagram showing the Bessel beam at a fixed Z-position with various data sets for different wavelengths.
Bessel Beam Evolution Along Z (a=10µm)

round-tip axicon
- \(n = 1.50669 \)
- apex angle \(\tau = 170^\circ \)
- \(a = 10\mu m \)
Bessel Beam Evolution Along Z ($a=10\mu m$)

- round-tip axicon
 - $n=1.50669$
 - apex angle $\tau = 170^\circ$
 - $a=10\mu m$
Bessel Beam Evolution Along Z (a=30µm)

- round-tip axicon
 - \(n = 1.50669 \)
 - apex angle \(\tau = 170^\circ \)
 - \(a = 30 \mu m \)
Bessel Beam Evolution Along Z ($a=30\mu m$)

- round-tip axicon
 - $n=1.50669$
 - apex angle $\tau=170^\circ$
 - $a=30\mu m$
Bessel Beam Evolution Along Z (a=60µm)

- $n=1.50669$
- Apex angle $\tau = 170^\circ$
- $a=60\mu m$

Data for Wavelength of 1.064 µm [1E3 (V/m)^2]
Bessel Beam Evolution Along Z (a=60µm)

round-tip axicon
- $n=1.50669$
- apex angle $\tau=170^\circ$
- $a=60\mu$m

10
On-Axis Distribution and Comparison

simulation result in VirtualLab Fusion

Fig. 2 from O. Brzobohatý, et al., Opt. Express 16, 12688-12700 (2008)
Peek into VirtualLab Fusion

customizable and flexible transmission definition

field visualization and analysis

parameter sweep
Workflow in VirtualLab Fusion

• Set up input Gaussian field
 – Basic Source Models [Tutorial Video]

• Set the position and orientation of components
 – How to Work with the Programmable Function & Example (Cylindrical Lens) [Use Case]

• Sweep the parameters and check the influence
 – Usage of the Parameter Run Document [Use Case]
VirtualLab Fusion Technologies
<table>
<thead>
<tr>
<th>title</th>
<th>Modeling of Bessel Beam Generation from Axicon with Round Tip</th>
</tr>
</thead>
<tbody>
<tr>
<td>document code</td>
<td>MISC.0009</td>
</tr>
<tr>
<td>version</td>
<td>1.2</td>
</tr>
<tr>
<td>edition</td>
<td>VirtualLab Fusion Basic</td>
</tr>
<tr>
<td>software version</td>
<td>2020.1 (Build 1.202)</td>
</tr>
<tr>
<td>category</td>
<td>Application Use Case</td>
</tr>
<tr>
<td>further reading</td>
<td>- Programming an Axicon Transmission Function</td>
</tr>
<tr>
<td></td>
<td>- Diffraction Patterns behind Different Apertures</td>
</tr>
<tr>
<td></td>
<td>- Focal Spots for Different Aberrations</td>
</tr>
</tbody>
</table>