

Afocal Systems for Laser Guide Stars

Abstract

For astronomical telescopes, laser guide stars are often used for correction of the atmospheric distortion. Such artificial star images are usually generated tens of kilometers away by high-power laser beams. In order to accurately design the optical system to generate and control the size of the laser guide star, the diffraction effects of the laser beam must be considered. In this example, a classical design of such a system is analyzed. The minimum spot size given by geometrical optics optimization can then be further reduced by considering diffractive effects and including a defocus or waist shift into the system.

Design Task #1 – Simple Afocal System

How to accurately calculate the laser beam parameters at the target plane 10 km away, and how to minimize the spot size there by varying the afocal system?

Parameters follow from L. Clermont, et al., "Design of a laser guide star for applications to adaptive optics", Proc. SPIE 11105 (2019)

Analysis of Afocal System for Laser Beams

Using geometrical optics, the afocal system gives a magnification of f_2/f_1 = 33.33. That predicts a beam diameter of 16.7mm at the target plane, but this does not include the divergence of the actual Gaussian source.

physical-optics simulation result with diffraction considered

Design of Simple Afocal System $w_0 = 0.25$ mm (fixed)

parametric optimization with downhill simplex method

Design of Simple Afocal System $w_0 = 1.5$ mm (fixed)

Let us try the optimization with another input Gaussian waist radius.

parametric optimization with downhill simplex method

initial variable values f_1 250mm f_2 2.5m

Design of Simple Afocal System $w_0 = 1.5$ mm (fixed)

Design Task #2 – Afocal System with Defocus

Is it possible to further reduce the beam size at the target plane if additional freedom is available? Let us try with defocus!

Design of Afocal System with Defocus

parametric optimization with downhill simplex method

values

df

Design of Afocal System with Defocus

Design Task #3 – Afocal System with Input Beam Waist Shift

Is it possible to further reduce the beam size at the target plane if additional freedom is available? Next, we will try with input beam waist shift!

Design of Afocal System with Input Beam Waist Shift

parametric optimization with downhill simplex method

12

values

• $f_1 = 22 \,\mathrm{mm}$

dp

Design of Afocal System with Input Beam Waist Shift

VirtualLab Fusion Technologies

title	Afocal Systems for Laser Guide Stars
document code	MISC.0083
version	1.1
edition	VirtualLab Fusion Basic
software version	2021.1 (Build 1.180)
category	Application Use Case
further reading	 <u>Laser Beam "Clean-Up" with Spatial Filter</u> <u>Pinhole Modeling in a Low-Fresnel-Number System</u>