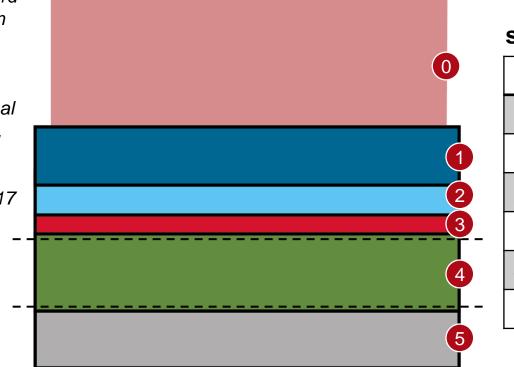


Absorption in a CIGS Solar Cell

Abstract


Solar cells are a fundamental technology in the field of renewable energy. To optimize efficiency, most common designs use thin-layer structures and media with high absorption coefficients as it is precisely this absorbed optical energy what will eventually be transformed into an electric current. Solar cells based on copper indium gallium selenide (CIGS) have become quite common as they can be made much thinner without losing absorption efficiency, compared with cells based on other materials.

Modeling Task

plane wave

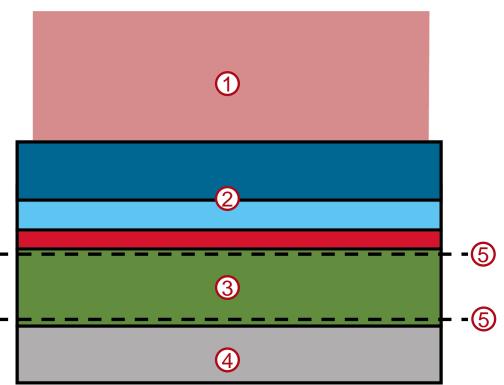
homogeneous spectrum from 300nm to 1100nm

System from: J. Goffard et al., "Light Trapping in Ultrathin CIGS Solar Cells with Nanostructured Back Mirrors," in IEEE Journal of Photovoltaics, vol. 7, no. 5, pp. 1433-1441, Sept. 2017, doi: 10.1109/JPHOTOV.2017 .2726566.

detectors

radiant flux (absorbed power will be calculated as the difference between the radiant flux readings of both detectors)

solar cell

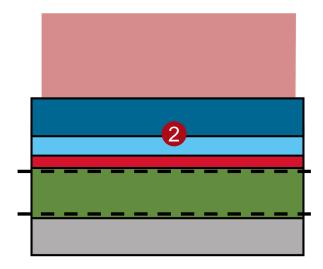

no.	material	thickness
0	fused silica*	-
1	ZnO:Al	100nm
2	i-ZnO	70nm
3	ZnS	50nm
4	CIGS	100/150/200nm
5	molybdenum	substrate

* We assume that the solar cell is protected by a layer of fused silica with anti-reflection coating.

Single-Platform Interoperability of Modeling Techniques

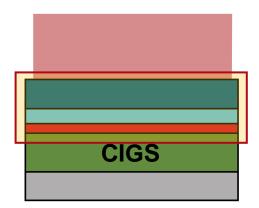
Light will encounter and interact with different components as it propagates through the system. A suitable model that provides a good compromise between accuracy and speed is required for each of these elements of the system:

- 1 source
- 2 solar cell layer
- 3 CIGS layer
- 4 Substrate
- **(5)** detector



Connected Modeling Techniques: Solar Cell Layers

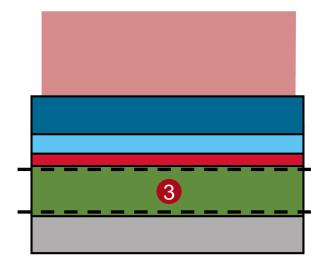
source
 solar cell layers
 CIGS layer
 substrate
 detectors


Available modeling techniques for multi-layer systems:

Methods	Preconditions	Accuracy	Speed	Comments
FMM/RCWA	none	high	high	rigorous model; includes evanescent waves; k- domain
S-matrix	planar surface	high	very high	rigorous model; includes evanescent waves; k- domain
Local Planar Interface Approximation	surface not in focal region of beam	high	high	local application of S matrix; LPIA; x-domain

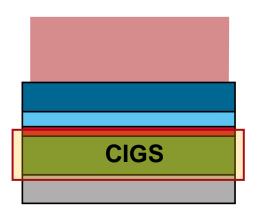
Since the **S-matrix** solver operates entirely in the k-domain, no additional steps for switching between domains (Fourier transforms) are required for the application of this solver. This allows for the fastest possible simulation speed while maintaining a rigorous model.

Stratified Media Component

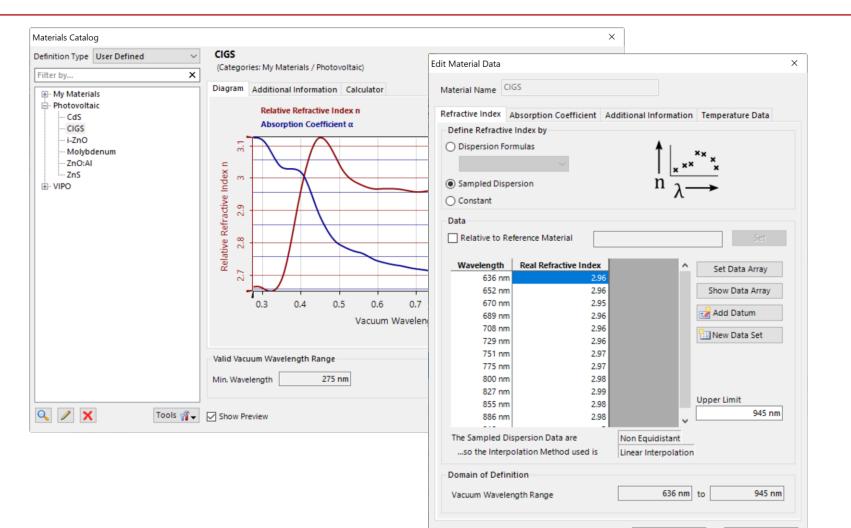

For the layers above the CIGS we employ the *Stratified Media Component*, since it provides a fast and rigorous solution for x, yinvariant layer stacks.

Edit Stratified Media	a Component			×			
Coordinate Systems	Component Size 20 mm × Reference Surface (all Channels) Plane Surface	Edit Parame	20 mm			>	<
Position / Orientation	Aperture O Yes O No Coating Name Standard Coating	Layer Defin	Index: 1 2 3 4			Coating Layers	
	Coating Orientation ← Front Side Application ←	Index	Thickness	Distance		Material	1
Solver	Homogeneous Medium Behind Surface CIGS in Homogeneous Medium CiGS Load	1 2 3	50 nm 70 nm 100 nm	50 nm 120 nm 220 nm		<u> </u>	
Fourier Transforms	уг. 🕑		d Igth Range of M Im Wavelength 300 nm	Maximum V	Delet Vavelength .125 µm	te Layer Tools 🔻	
		۹ 🔒	1		OK	Cancel Help	

Connected Modeling Techniques: CIGS Layers


source
 solar cell layer
 CIGS layer
 substrate
 detectors

Methods	Preconditions	Accuracy	Speed	Comments		
Rayleigh Sommerfeld Integral	none	high	low	rigorous solution		
Fourier Domain Techniques	none	high	high	rigorous mathematical reformulation of RS integral		
Fresnel	paraxial	high	high	assumes paraxial light;		
Integral	non-paraxial	low	high	moderate speed for very short distances		
Geometric	low diffraction	high	very high	neglects diffraction		
Propagation	otherwise	low	very high	effects		



The CIGS layer itself can be modeled by a single free-space propagation step in the corresponding homogeneous medium. Due to diffraction does not add any significant effects here, **Geometric Propagation** is used.

Definition of Materials and Media

VirtualLab Fusion offers a comprehensive database of different materials that can, among other things, be used for coatings. But it is also possible to import material data from measurements, like ellipsometry.

Usable Vacuum Wavelength Range 🧵

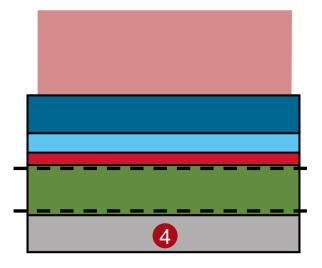
🔍 🛃 Tools 🎲 🗸 Validity: 🚹 📋

636 nm to

Cancel

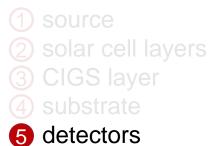
Ok

925 nm


Help

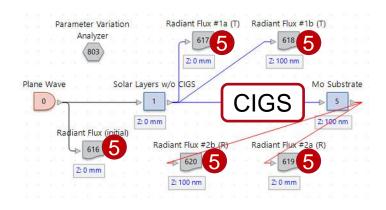
Connected Modeling Techniques: Substrate

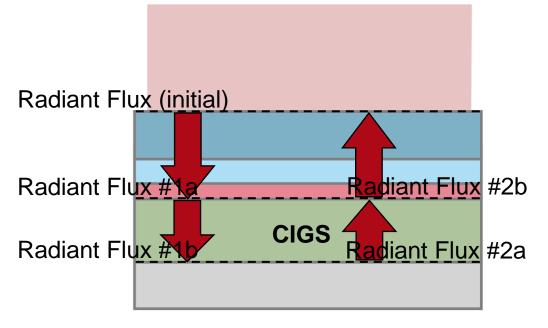
source
 solar cell laye
 CIGS layer
 substrate
 detectors


Available modeling techniques for interaction with surface:

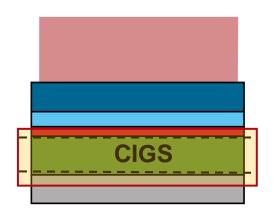
Methods	Preconditions	Accuracy	Speed	Comments
functional approach	-	no Fresnel losses		
S-matrix	planar surface	high	high	rigorous model; includes evanescent waves; k- domain
Local Planar Interface Approximation	surface not in focal region of beam	high	high	local application of S matrix; LPIA; x-domain

For our simulation, only the reflection of the substrate is of interest, reducing the problem to an interaction with a single surface. Here, **Local Planar Interface Approximation** provides the best compromise between speed and accuracy.


Connected Modeling Techniques: Detectors

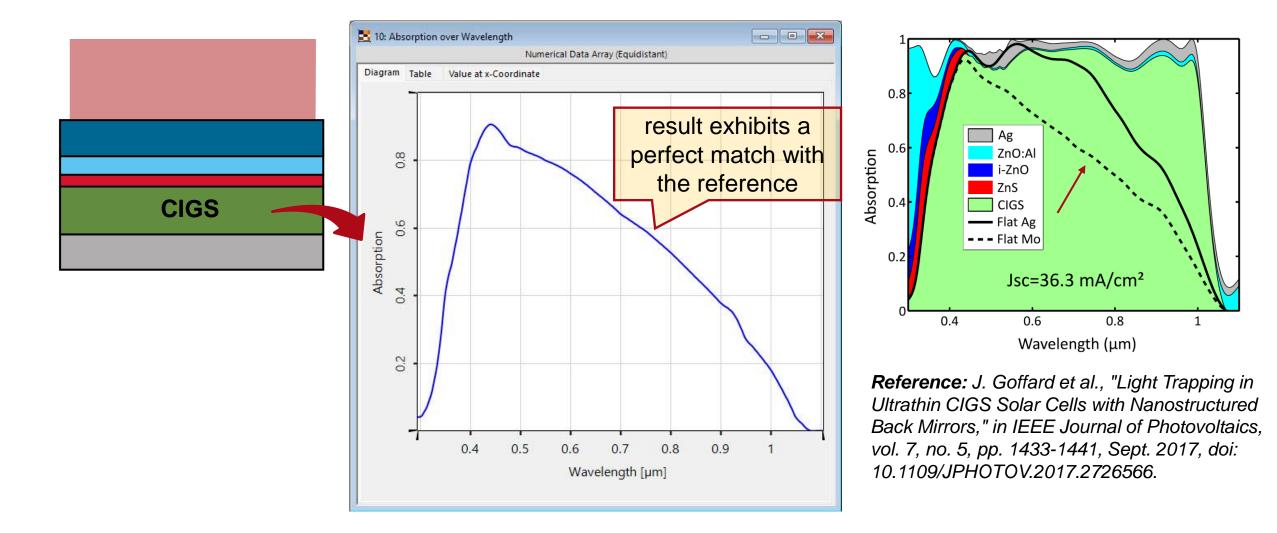


The absorbed energy inside the CIGS layer per wavelength is determined by adding/subtracting the values of the radiant flux from 4 different *Universal Detectors*: before the CIGS layer: 1a(Transmitted part) and 2a(Reflected part), behind: 1b and 2b.

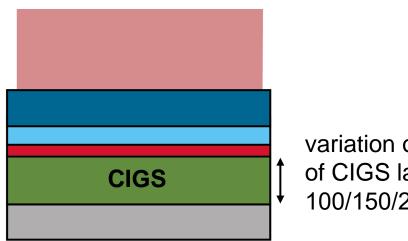

absorped energy
$$= 1b - 1a + 2b - 2a$$

These values are then normalized by the initial radiant flux to get the absorption ratio.

Parameter Variation Analyzer

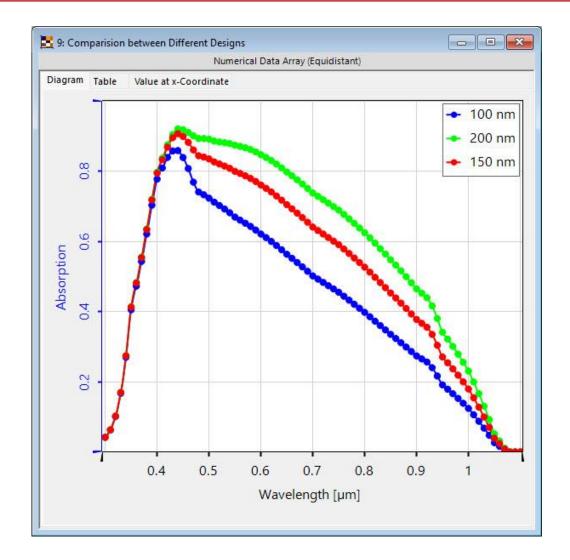


With the Parameter Variation Analyzer, the addition/subtraction can be done automatically, outputting the resulting absorption by a single simulation. For more information, see:


Parameter Variation Analyzer

10 6: Ed	lit Paramete	r Variat	ion							<u> </u>		×		
Paramet	ter Specifica	tion												
Set up th	h <mark>e para</mark> meter	(s) to b	e varied.											
specifyir		aramet	parameters whers are varied		ed as we	ll as the re	sulting nun	nber of ite	rations. Severa	al <u>modes</u> are ava	ilable			
Filter					1922	10100	192		100420 0044	Show Only Varied		eters		
1 2 *	Object "Plane Wave		Category	Parameter Wavelength	Vary	From 300 nm	1.1 μm	Steps 81	Step Size	Original Value 900 nm	e			
		1 ⊞ 26 27 ⊟ 28	Preset usi	eters Snippet Hel ng directive: ditional usi	s					-		neterVar	iation [\	/irtualLat
		29 30 31 ⊞ 53 54 ₽		to handle G				LabAPI.C	Core.Module	s.ISnippet_F				
	6	55 56 🗆 57 58 🖻 59		List <detecto< td=""><td></td><td>tObject></td><th>GetData</th><td>(Virtua]</td><td>lLabAPI.Cor</td><td>e.ParameterF</td><td></td><td></td><td></td><td></td></detecto<>		tObject>	GetData	(Virtua]	lLabAPI.Cor	e.ParameterF				
		70 71 72 73 74 75 76 77 78	st st st	rameterVaria ring searchS ring searchS ring searchS ring searchS ring searchS	tring_d tring_d tring_d tring_d	etectorN etectorN etectorN etectorN	lame1 = " lame2 = " lame3 = " lame4 = "	Power #1 Power #1 Power #2 Power #2	1b (T)"; 2a (R)"; 2b (R)";		•			
			Check Consiste	ency Validity: 🚺	1					К		ancel)[Help

Absorption for Different Thicknesses of the CIGS Layer



Absorption for Different Thicknesses of the CIGS Layer

variation of thickness of CIGS layer: 100/150/200nm

The thickness of the absorbing material is one of the most important parameters affecting the overall efficiency of the cell.

title	Absorption in a CIGS Solar Cell
document code	MISC.0096
document version	1.1
software edition	VirtualLab Fusion
software version	2023.2 (Build 1.242)
category	Application Use Case
further reading	 <u>Stratified Media Component</u> <u>Parameter Variation Analyzer</u>