

### Fast Optimization of Grating-Based Waveguides Enabled by Efficient Single-Platform Interoperability

### **Abstract**



In the design process of waveguide devices in the field of augmented and mixed reality applications (AR & MR), lateral uniformity (per field of view mode) and overall efficiency are two of the most important merit functions. In order to optimize the uniformity and efficiency in a lightguide system, it is necessary to allow for a lateral variation of the grating parameters, particularly in the expander and/or outcoupling region. For this purpose, VirtualLab Fusion enables the introduction of smoothly varying grating parameters in a grating region along with the necessary tools to run an optimization according to a defined merit function. Furthermore, for such complex optical setups, a flexible interoperability of modeling techniques on a single platform is key for an accurate and fast simulation. This use case demonstrates the analysis of accuracy and speed and the resulting fast optimization of a lightguide with continuously varied values of the fill factor in order to obtain an adequate uniformity.

### **Task Description**

**Task:** Optimize lateral uniformity in the eyebox (e.g. for a single FOV mode) with an adequate balance of speed and accuracy?



Outcoupler

binary grating

### Simulation & Setup: Single Platform Interoperability

### **Connected Modeling Techniques: Source**

### **Light Engine Model**

- beam type: plane wave
- beam diameter: 1 mm (circular)
- polarization: linearly polarized
- wavelength: 532 nm



## **Connected Modeling Techniques: Beam Propagation**

Each beam interacts with very different kinds of optical components while propagating through the complex system. Hence, an accurate model requires a seamless interoperability of algorithms to be able to handle all aspects that arise:

- gratings (incoupler, EPE, outcoupler)
   free-space (propagation inside the glass slab)
   reflection at surfaces of glass slab
- (4) region boundaries (at boundaries of a grating)
- **(5)** detector (uniformity measurement in eye box)





## **Connected Modeling Techniques: Gratings**

### gratings (incoupler, EPE, outcoupler)

free-space (propagation inside the glass slab)
 reflection at surfaces of glass slab
 region boundaries (at boundaries of a grating)
 detector (uniformity measurement in eye box)



### Available modeling techniques for periodic micro and nano structures:

| Methods                          | Preconditions                                | Accuracy | Speed     | Comments                                                            |
|----------------------------------|----------------------------------------------|----------|-----------|---------------------------------------------------------------------|
| Fourier Modal<br>Method (FMM)    | None                                         | High     | High      | Small periods                                                       |
| Thin Grating                     | Large periods & features, thin               | High     | High      | Thickness about wavelength; period & features larger than about ten |
| Approximation                    | Otherwise                                    | Low      | High      | wavelengths                                                         |
| FMM in Kogelnik<br>Approximation | Thick volume<br>gratings; Bragg<br>condition | High     | Very high | Method is electromagnetic<br>formulation of Kogelnik's approach     |
|                                  | No Bragg condition                           | Low      | Very high |                                                                     |

As a rigorous eigenmode solver, the Fourier modal method (also known as rigorous coupled wave analysis, RCWA) provides a very high accuracy. Due to the small periods in this setup, the calculation is speed is fast. Hence, FMM is the best compromise of accuracy and speed.

### **Connected Modeling Techniques: Inside Waveguide Slab**

gratings (incoupler, EPE, outcoupler)
 free-space (propagation inside the glass slab)
 reflection at surfaces of glass slab
 region boundaries (at boundaries of a grating)
 detector (uniformity measurement in eye box)



### Available modeling techniques for free-space propagation:

| Methods                            | Preconditions   | Accuracy | Speed     | Comments                                                 |
|------------------------------------|-----------------|----------|-----------|----------------------------------------------------------|
| Rayleigh<br>Sommerfeld<br>Integral | None            | High     | Low       | Rigorous solution                                        |
| Fourier<br>Domain<br>Techniques    | None            | High     | High      | Rigorous mathematical<br>reformulation of RS<br>integral |
| Fresnel                            | Paraxial        | High     | High      | Assumes paraxial light;                                  |
| Integral                           | Non-paraxial    | Low      | High      | moderate speed for<br>very short distances               |
| Geometric<br>Propagation           | Low diffraction | High     | Very high | Neglects diffraction                                     |
|                                    | Otherwise       | Low      | Very high | effects                                                  |

Two fast modeling techniques are available for calculating the propagation inside the glass plate:

Fourier Domain Techniques

(includes diffraction effects of boundaries and apertures)

Geometric Propagation

 (neglects diffraction that arises from boundaries and apertures)

For choosing the adequate technique the results need to be considered!

### **Connected Modeling Techniques: Waveguide Surfaces**

gratings (incoupler, EPE, outcoupler)
 free-space (propagation inside the glass slab)
 reflection at surfaces of glass slab
 region boundaries (at boundaries of a grating)

5) detector (uniformity measurement in eye box)



### Available modeling techniques interaction with surfaces:

| Methods                                    | Preconditions                       | Accuracy | Speed     | Comments                                                                     |
|--------------------------------------------|-------------------------------------|----------|-----------|------------------------------------------------------------------------------|
| S matrix                                   | Planar surface                      | High     | Very High | Rigorous model; includes<br>isotropic and birefringent<br>coatings; k-domain |
| Local Planar<br>Interface<br>Approximation | Surface not in focal region of beam | High     | Very High | Local application of S matrix; LPIA; x-domain                                |

Two modeling techniques are available for calculating the interaction with the surfaces.

Due to both are very fast and the **Local Planar Interface Approximation** enables to consider curved surfaces (e.g. for tolerancing analysis), this technique is chosen.

# **Connected Modeling Techniques: Region Boundaries**



# **Light Guide Component**



Modeling techniques (1) to (4) are combined in the *Light Guide Component*. With this element, grating-based lightguide systems with complex-shaped grating regions can easily be defined. Furthermore, these regions can be equipped with idealized or real grating structures to act as incoupler, outcoupler or exit pupil expanders. More information under:





### **Grating Regions**



For the incoupler, outcoupler and eye pupil expander (EPE) real gratings were used. Their Rayleigh matrices and the corresponding efficiencies are calculated rigorously with FMM (RCWA). You can find more information on how to set this up under:





## **Connected Modeling Techniques: Detector Eyebox**

grating (incoupler)
 free space (propagation inside the gla
 reflection at surfaces of glass slab
 region boundaries (boundaries of a g

**5** detector (uniformity measurement in eye box)



Full flexibility in detector modeling:

- Radiometry, e.g., irradiance per FOV or all FOVs, radiance
- Photometry, e.g., illuminance per FOV or all FOVs, luminance
- Uniformity measures

### **Diffraction Inside Waveguide: Irradiance Eyebox**

#### grating (incoupler)

2 free-space (propagation inside the glass slab)

### result without diffraction:



| Methods                           | Preconditions   | Accuracy | Speed     | Comments                                                 |
|-----------------------------------|-----------------|----------|-----------|----------------------------------------------------------|
| Fourier Domain<br>Techniques None |                 | High     | High      | Rigorous mathematical<br>reformulation of RS<br>integral |
| Geometric                         | Low diffraction | High     | Very high | Neglects diffraction                                     |
| Propagation                       | Otherwise       | Low      | Very high | effects                                                  |

#### result with diffraction:



| Methods                      | Preconditions   | Accuracy | Speed     | Comments                                                 |
|------------------------------|-----------------|----------|-----------|----------------------------------------------------------|
| Fourier Domain<br>Techniques | None            | High     | High      | Rigorous mathematical<br>reformulation of RS<br>integral |
| Geometric                    | Low diffraction | High     | Very high | Neglects diffraction                                     |
| Propagation                  | Otherwise       | Low      | Very high | effects                                                  |

## **Diffraction Inside Waveguide: Uniformity Measurement**

grating (incoupler)

9: "Camera Detector" (# 600) (Profile: General)

pupil

pupil

pupi

-3 -2

free-space (propagation inside the glass slab)

### result without diffraction:



**Conclusion:** Due to a similar pattern and distribution in the eye box for both results, which is caused by the general function of the waveguide in combination with the averaging inside the chosen pupils, **diffraction can be neglected** for the optimization of the (lateral) uniformity. Hence, the accuracy of the faster technique is sufficient for this purpose.

### result with diffraction:

### **Uniformity Detector**



The Uniformity Detector is used to measure the lateral uniformity. This detector evaluates the impinging intensity in configured local areas, which are called pupils. Each pupil is defined by its size ( $dx \times dy$ ) and shape, which can be set either elliptical or rectangular.

You can find more information on how to set this up under:





### Lightguide Design Workflow

# **General Workflow with Additional Guidance**

- Configuration of basic optical lightguide setup (not part of this use case)
- 2. Application of the *Footprint and Grating Analysis* tool including the generation of the optical setup equipped with all requirements for the parameter modulation
- 3. Definition of desired modulation of grating parameters
- 4. Select variables and define merit functions to optimize the modulated grating parameters.

The starting point is an existing, executable lightguide system, where the basic geometries (desired distances and positioned grating regions) and grating specifications (orientation, period, orders) are already included. This example is taken from:

- <u>Construction of a Light Guide [Use Case]</u>
- Light Guide Layout Design Tool [Use Case]

The real grating structures of the grating regions are configured, a necessary step before applying a continuous or smooth variation of the grating parameters:

- How to Set Up a Lightguide with Real Grating Structures [Use Case]
- Simulation of 1D-1D Pupil Expander with Real Gratings [Use Case]

The *Footprint and Grating Analysis* tool is used to specify the desired range for the variation of the grating parameters and to pre-calculate the according Rayleigh coefficients for the specific conditions (wavelength and directions). As a next step, an optical setup is generated, where the smooth parameter variation can be defined:

- Footprint Analysis of Lightguides for AR/MR Applications [Use Case]
- <u>Grating Analysis and Smoothly Modulated Grating Parameters on Lightguides</u> [Use Case]

Note:

The grating modulation is defined for individual grating regions.

### **Footprint & Grating Analysis**



With the help of the *Footprint & Grating Analysis Tool*, the grating characteristics (complex valued) are pre-calculated and stored in lookup tables for a specified range of the chosen parameter (e.g. fill factor). The initial range of the fill factor is chosen according to the range of available efficiency modulation. More information can be found in:

| Parameters to be Optimized               | Initial Values |
|------------------------------------------|----------------|
| varied range of fill factor (EPE)        | 10% – 50%      |
| varied range of fill factor (outcoupler) | 40% – 90%      |

Grating Analysis and Smoothly Modulated Grating Parameters on Lightguides

### **Generation of the Initial System**



grating regions without smooth modulation

|           | outcoupler |  |
|-----------|------------|--|
| incoupler | EPE        |  |

- A lightguide setup with a so-called grating parameter modulation function is generated from the *Footprint & Grating Analysis Tool* (including the grating characteristics).
- The *Uniformity Detector* is used to define the merit function for the optimization.

## **Define Modulation Function of the Grating Region**

| Edit Light Guide Component X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Edit Grating Region X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Edit Grating Parameter Modulation Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solid       Surface Layouts         Solid       Surface Name       Edit       Info         Coordinate       Plane Surface       Edit Surface       Surface layout containing 3 regions.         2       Plane Surface       Edit Surface layout containing 0 regions.         2       Plane Surface       Edit Surface layout containing 0 regions.         Edit Surface Layout       X         Edit Surface Layout       X         I Incoupling Grating       Region Type         Period       1         Incoupling Grating       Rectangular Region 380 nm         2       Expansion Grating         3       Outcoupling Grating         Rectangular Region       380 nm         Gridded       Segmentation | Shape       Region Channels       Grating <ul> <li>① ID-Periodic (Lamellar)</li> <li>② 2D-Periodic</li> <li>Grating Period</li> <li>③ 80 nm</li> <li>③ Orientation (Rotation about z-Axis)</li> <li>③ 90°</li> </ul> Orientation (Rotation about z-Axis)     ④ 90°           Order Selection         Efficiencies           ○ Constant         ○ Programmable         ④ From Real Gratings           ○ Use Modulated Grating Parameters within Region         Grating Stack         Image: Coad         Edit         Q view           Grating Parameter Modulation Function         Number of parameters in modulation function: 1         → Fill Factor (Bottom) (from 10 % to 90 %)         Modulation defined by Programmable Function           Lookup Table         Lookup Table         Edit         Q view | □ Define Grating Parameter Function for Two Grating Parameters         Settings for Grating Parameter #1         Name       Fill Factor (Bottom)         Property       Percentage         Minimum       10 %         Maximum       90 %         Modulation Defined by       O Sampled Data         ● Programmable Function         ● Edit       Validity: ●         StartPositionLine       1 mm       -1.75 mm         EndPositionLine       1 mm       7.75 mm         ValueAtStartPosition       40 %       90 % |
| Apply Absorption Outside of Region on Surface     OK     Cancel     Help     Transforms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Number of entries within lookup table: 2<br>→ Number of different weelength(s): 1<br>→ Number of different direction vector(s): 1<br>See the full use case for setting up a smooth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Show Grating Parameter Variation Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Validity: OK Cancel Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | modulation based on mathematical function:<br>Grating Analysis and Smoothly Modulated Grating<br>Parameters on Lightguides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

0

-2

0 2

linear modulation for outcoupler

- Open the edit dialogue of the region in the lightguide component; the grating characteristics and the lookup tables are stored in the grating regions.
- Edit the *Grating Parameter Modulation Function* so that it's defined as a programmable function, the intended linear modulation of the grating parameters is defined by the value at the start and end position (left to right border for EPE & top to bottom for the outcoupler).

## **Generation of the Initial System**



After defining the modulation for the EPE and outcoupler respectively, the *Parametric Optimization* document can be started via *Optical Setup > New Parameter Optimization*.

| Parameters to be Optimized               | Initial Values |
|------------------------------------------|----------------|
| varied range of fill factor (EPE)        | 10% – 50%      |
| varied range of fill factor (outcoupler) | 40% – 90%      |

### **Optimization**

### **Optimization Settings – Select Parameters**

| 1.0-                          |                                                                              |                                                      |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Edit Grating Parameter Modulation Function                                                                               |         |
|-------------------------------|------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------|
| Dir Par<br>Parame<br>Select f | ametric Optimization<br>ter Selection<br>he parameters which shall be varied | during optimization.                                 |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Define Grating Parameter Function for Two Grating Parameters Settings for Grating Parameter #1 Name Fill Factor (Bottom) |         |
| You car<br>Filter             | select one or more parameter which                                           | h shall be varied within t                           | he optimization.                                                                                                                                                                                                                                                         | X Show Only Varied Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Property Percentage<br>Minimum 10%<br>Maximum 90%                                                                        |         |
| 1 2 *                         | Object                                                                       | Category                                             | Parameter                                                                                                                                                                                                                                                                | Vary Original Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Modulation Defined by O Sampled Data   Programmable F                                                                    | unction |
|                               | "Light Guide (After Surface<br>Layout)" (# 1)                                | Surface #1 (Plane<br>Surface)                        | Surface Region #2 (Expansion Grating)   Grating Parameter Modul<br>Surface Region #2 (Expansion Grating)   Grating Parameter Modul<br>Surface Region #3 (Outcoupling Grating)   Grating Parameter Mod<br>Surface Region #3 (Outcoupling Grating)   Grating Parameter Mod | ation Function   ValueAtStar     Image: Constraint of the second |                                                                                                                          |         |
|                               |                                                                              |                                                      |                                                                                                                                                                                                                                                                          | Edit Grating Parameter Modulation Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ValueAtStartPosition                                                                                                     |         |
| Se<br>pc<br>ou<br>Th          | elect the value<br>sitions of the r<br>itcouple grating<br>ne initial values | of the fill<br>nodulatio<br>gs, respects<br>are auto | factor at the start and end<br>n for the EPE and<br>ctively.<br>matically filled in                                                                                                                                                                                      | Define Grating Parameter Function for Two Grating Parameters   Settings for Grating Parameter #1   Name   Fill Factor (Bottom)   Property   Percentage   Minimum   0 %   Maximum   90 %   Modulation Defined by   Sampled Data   Edit   Validity:   StartPositionLine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MuleAtEndPosition<br>Edit grating parameter modu<br>function for EPE region.                                             | ation   |
| ac<br>ec                      | cording to the litor.                                                        | settings i                                           | n the modulation function                                                                                                                                                                                                                                                | EndPositionLine<br>ValueAtStartPosition<br>ValueAtEndPosition<br>Edit grating parameter mo<br>function for outcoupler reg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 mm 7.75 mm<br>40 %<br>90 %<br>Pdulation<br>Jion.                                                                       |         |

🔍 View 📘

OK

Cancel

Help

×

-5 mm

-5 mm 10 % 50 %

Help

.

### **Optimization Settings – Specify Constraints**

| 🕑 1: Parametric Optimization                                                                                                                                 |                                                |              |        |                 |                           |            |                                    |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------|--------|-----------------|---------------------------|------------|------------------------------------|-----------------|
| Constraint Specifications                                                                                                                                    |                                                |              |        |                 |                           |            |                                    |                 |
| Select and specify the constraints which sl                                                                                                                  | nall be considered during optimization.        |              |        |                 |                           |            |                                    |                 |
|                                                                                                                                                              |                                                |              |        |                 |                           |            |                                    |                 |
| Constraint Host                                                                                                                                              | Constraint Name                                | Use          | Weight | Constraint Type | Value 1                   | Value 2    | Start Value                        | Contribution    |
|                                                                                                                                                              | Surface #1 (Plane Surface)   Surface Region #2 |              | 1000   | Range           | 10 %                      | 90 %       | 10 %                               | 0 9             |
| "Light Guide (After Surface Lavout)" (# 1)                                                                                                                   | Surface #1 (Plane Surface)   Surface Region #2 |              | 1000   | Range           | 10 %                      | 90 %       | 50 %                               | 0 %             |
| Light Guide (Alter Surface Layout) (# 1)                                                                                                                     | Surface #1 (Plane Surface)   Surface Region #3 |              | 1000   | Range           | 10 %                      | 90 %       | 40 %                               | 0 %             |
|                                                                                                                                                              | Surface #1 (Plane Surface)   Surface Region #3 |              | 1000   | Range           | 10 %                      | 90 %       | 90 %                               | 0 %             |
|                                                                                                                                                              | Minimum                                        |              |        |                 |                           |            |                                    |                 |
|                                                                                                                                                              | Maximum                                        |              |        |                 |                           |            |                                    |                 |
| "Uniformity Detector" (# 602)                                                                                                                                | Uniformity Error                               | $\checkmark$ | 1      | Target Value    | 0 %                       |            | 99.91592315 %                      | 99.97144607 9   |
|                                                                                                                                                              | Arithmetic Mean                                | $\checkmark$ | 100000 | Target Value    | 0.0002 (V/m) <sup>2</sup> |            | 0.0001466014283 (V/m) <sup>2</sup> | 0.02855392699 9 |
|                                                                                                                                                              | Standard Deviation                             |              |        |                 |                           |            |                                    |                 |
| increased weight for the <i>Arithmetic Mean</i> was<br>chosen to raise the contribution (weight of the<br>prit) for this value. Otherwise, the algorithm may |                                                |              |        |                 | Target Fi                 | unction Va | lue 0.9986043106                   | 5 Update        |
| acrifice more efficien                                                                                                                                       | cy for a better uniformity                     | /.           |        |                 |                           |            | < Back Next >                      | Show •          |

- Define available range of the variables (here: fill factors of EPE and outcoupler).
- In order to achieve a low uniformity error with acceptable intensity distribution, the target value for the uniformity error is set to 0%, and a target value of the arithmetic mean is specified.
- By defining the weight value for the merit functions, the contribution (relevance or priority) for the optimization can be adapted.

In this optimization, the initial values are quite close to the limits of the available range. Hence, the weights for the *Range* constraints are increased, in order to ensure that the values in the optimization stay inside the given range (the downhillsimplex does not provide hard boundaries for the parameter ranges). And because the *Start Values* are inside the allowed value range, the associated *Contribution* is regarded as 0%.

| merit function   | Values                   |
|------------------|--------------------------|
| Uniformity Error | 0%                       |
| Arithmetic Mean  | 0.0002(V/m) <sup>2</sup> |

### **Optimization Result**



#### initial system

| merit function   | Values          |
|------------------|-----------------|
| Uniformity Error | 99.92%          |
| Arithmetic Mean  | 1.47E-04 (V/m)² |

#### optimized system

| merit function   | Values                      |
|------------------|-----------------------------|
| Uniformity Error | 6.84%                       |
| Arithmetic Mean  | 1.40E-04 (V/m) <sup>2</sup> |

### **Optimization Result**



| Parameters                               | Initial Values | <b>Optimized Values</b> |
|------------------------------------------|----------------|-------------------------|
| varied range of fill factor (EPE)        | 10% – 50%      | 10.0% – 17.1%           |
| varied range of fill factor (Outcoupler) | 40% – 90%      | 24.1% - 41.4%           |

# **Optimization Uniformity vs. Energy Density**



The line scan through the eyebox for the initial and optimized systems reveals the difference in uniformity and local energy density.



| title            | Fast Optimization of Grating-Based Waveguides Enabled by Efficient Single-Platform<br>Interoperability                                                                                                                                                                                            |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| document code    | LIG.0014                                                                                                                                                                                                                                                                                          |
| document version | 2.1                                                                                                                                                                                                                                                                                               |
| software version | 2023.1 (Build 1.556)                                                                                                                                                                                                                                                                              |
| software edition | <ul><li>VirtualLab Fusion Advanced</li><li>Light Guide Toolbox Gold Edition</li></ul>                                                                                                                                                                                                             |
| category         | Application Use Case                                                                                                                                                                                                                                                                              |
| further reading  | <ul> <li>Grating Analysis and Smoothly Modulated Grating Parameters on Lightguides</li> <li>Uniformity Detector for Lightguide Systems</li> <li>Light Guide Layout Design Tool</li> <li>Flexible Region Configuration</li> <li>How to Set Up a Lightguide with Real Grating Structures</li> </ul> |