

Visualize Time Dependency of a Propagating Field

Abstract

While complex fields and amplitudes are commonly used to represent electromagnetic fields, the actual field propagates along time. This tutorial explores methods for visualizing real-time field propagation in VirtualLab Fusion, demonstrating the concept through two distinct examples.

Temporal Sampling of Real Part

х

2D Harmonic Fields with a single subset can have a time dependency added by the *Temporal Sampling of Real Part* functionality under *Manipulations/Miscellaneous*. This function will multiply $e^{i\omega_0 t}$ onto the data array, with ω_0 calculated from the temporal period via $T = 2\pi/\omega_0$ and then extract the real part at $t = \frac{1}{n}T, \frac{2}{n}T, ..., T$ with n being the parameter defined by *Sampling Count of T*.

If the *Treat the Data as Electric Field* flag is active it additionally multiply the extracted real part by 2.

Create Animation

aneous	Create Cr					
r	Animation Narmo					
r						
Conversion Settin	gs					×
Bitmap Size						
Aspect Ratio	True to Physical Scale	~				
Width	200 🜩	Height		200 🜩		
Scale Frames to	Common Value Range	~				
			ОК	Cancel	Help	

The new document can then by turned into a movie by the *Create Animation* button in *Manipulations*. More information about animation generation under: <u>Overview Image</u>

Example 1 – Propagation of an Inclined Plane Wave over a Distance of 10 mm

Modeling Scenario

Set up Optical System

* 5: Optical Setup View #4 (Example System: Focus) Default Image: Components ideal Components Plane Wave Ideal Components 0 Apertures and Lenses 1 Ideal Lens 2:10 mm Spherical Phase 2:10 mm Stop Zernike & Seidel Aberrations	ersal Detector 600 2 10 mm Detector Window (k-Domain) Field Quantities Select Field Data Which Is Provided to Detector Add-Ons Select Field Data Which Is Provided to Detector Add-Ons Detector Window (x-Domain) Detector Window (x-Domain) Coordinate Systems	cor Window (k-Domain) Gridless Data Add-ons Field Quantities Detector Window (x-Domain) Vindow Centered Around O Detector Position Center of Field Mode
Set up the detector so that it only detects a single component and is one dimensional. Ensure sufficient sampling points to avoid Moiré effects.	Josethis Josethis Josethis Josethis Josethis Domain Space (x-Domain) Configure Field Data Visualization by Electromagnetic Field Quantity Add-On Apply Paraxial Approximation for Component Calculation? Yes No Sum Mutually Coherent Modes? Propagation Image: the space pagation Image: the space pagation Components Ex Ey Ey Ex Ey Ey <td>dow Position 0 mm × 0 mm Window Size Field Data (Per Mode) ● Manual Setting (All Modes) Iow Size 20 µm × 1 nm Grid Resolution Field Data (Per Mode) ● Manual Setting (All Modes) iet Grid Period ● Set Grid Points Grid Points User-Defined ✓ 501 ÷ 1 ÷</td>	dow Position 0 mm × 0 mm Window Size Field Data (Per Mode) ● Manual Setting (All Modes) Iow Size 20 µm × 1 nm Grid Resolution Field Data (Per Mode) ● Manual Setting (All Modes) iet Grid Period ● Set Grid Points Grid Points User-Defined ✓ 501 ÷ 1 ÷
	Validity: 🔮 🔕 Assistant OK Cancel Help	stant OK Cancel Help

Perform a Parameter Run

131: Parameter Run Parameter Specification Set up the parameter(s) to be varied.		Perform a <i>Paran</i> <i>Before</i> parameter and 10.01 mm. Endirection through	<i>meter Run</i> , er from the Ensure suf h the <i>Step</i> s	, vary dete ficien s colu	ing the <i>l</i> ctor bet t sampli ımn.	Distance ween 9. ng poin [:]	€ 99mm ts in z-
Specifying how the parameters which shall be varied as well as the resulting humber of iterations, several modes Usage Mode Standard Filter by X Show Only 1 2 * Parameter Vary From To Steps Step Size Original Value	/ Varied Parameters	J					
Image: State of the state	10 * 131: Parameter Ru	1				F	- • •
	Results Start the parameter run	and analyze its results				/	
< Back Nex	Go!	ted Results for Next Run				Local Execution (Parallel Iteration	ons: 8)
					Itera	ition Step	
	Detector	Subdetector	Combined Output	198	199	200	201
	Varied Parameters	Distance Before ("Universal	Data Array)97 mm	10.0098 mm	10.0099 mm	10.01 mm
Extract the output by double-clicking the <i>Universal Detector</i> – row. Ensure that the <i>Combined Output</i> is set to 2D Data Array.	Tuniversal Detector" (4	Selection	2D Data Array 🗸	a Array	1D Data Array Fil < Back	1D Data Array	1D Data Array

Temporal Sampling & Movie Generation

result of the Parameter Run

Follow the workflow demonstrated on pages 3 and 4 to create a movie of the time dependent propagation of the field through the focal area.

Example 2 – Field Inside Photonic Lattices

Modeling Scenario

source

- ideal plane wave
- wavelength: varies between 400nm and 2000nm
- linearly polarized (TE or TM depending on configuration)

photonic lattices

- 1D lamellar grating
- invariant in y-direction
- refractive index of cylinders: 3.5
- 3 configurations with different period Λ : 500 nm, 700 nm and 1100nm

Reference: Yeong Hwan Ko, Nasrin Razmjooei, Hafez Hemmati, and Robert Magnusson, "Perfectly-reflecting guided-mode-resonant photonic lattices possessing Mie modal memory," Opt. Express 29, 26971-26982 (2021)

Scenario

Field Inside Analyzer: FMM

The sample files for this task can be found in the following use case: <u>Resonant Photonic Lattices</u>

For our demonstration we want to setup the *Field Inside Component Analyzer: FMM* in a way that it only detects one component and that efficient sampling is ensured. Then we simulate the system using the analyzer as *Simulation Engine*.

Ex-Component	Ey-Component	Ez-Component
Hx-Component	Hy-Component	Hz-Component
Evaluated Modes		
Forward Propagat	ing 🛛 🗹 B	ackward Propagating
x-z-Region		
Number of Periods	1	
z-Range	Whole Component \sim	
Sampling	-	-
Sampling Points	x-Direction	z-Direction
Sampling Distance	2	

Temporal Sampling & Movie Generation

result of the Field Inside generated movie Analyzer: FMM on Related Miscellaneous Create Create Dim Animation Harmonic Field Red rations -137: Animation 🛃 150: "Field Inside Component Analyzer:... 📼 📼 🎫 M Savitzky-Golay Filter Cr Create aneous Numerical Data Array (Equidistant) Temporal Sampling of Real Part Animation Harmo Diagram Table Value at (x,y) Quantization Amplitude of "Ey" [V/m] Hard Ouantization 3.68... Soft Quantization Floyd-Steinberg Quantization 0.5 Follow the workflow demonstrated on page 3 and 4 to create a movie of the × [hm] 0 1.84... time dependant propagation of the field through the focal area. 0.5 0.00... 5 -0.6 -0.4 -0.2 z [µm] H 4 II F H Frame

7/20

title	Visualize Time Dependency of a Propagating Field
document code	TUT.0437
document version	1.0
required packages	-
software version	2024.1 (Build 2.74)
category	Tutorial
further reading	 <u>Overview Image</u> <u>Resonant Photonic Lattices</u>

Marketing Picture

