Friedrich-Schiller-Universität Jena

SPIE PW 2018, Paper 10518-63

Non-paraxial Diffractive and Refractive Laser Beam Shaping

Liangxin Yang¹, Roberto Knoth², Christian Hellmann³, Frank Wyrowski¹

- 1. Friedrich-Schiller-Univ. Jena (Germany);
- 2. LightTrans International UG (Germany);
- 3. Wyrowski Photonics UG (Germany)

Introduction

In general, an optical design problem can be described as followed:

- given input field $E^{in}(x, y)$
- design an optical system: $E^{in}(x, y) \rightarrow E^{sig}(x, y)$
- obtain a detector function $\Omega(\mathbf{E}^{sig}(x, y))$

The Fourier Modal Method (FMM) is a rigorous technique to model the electric field propagation through a grating.

"Local plane-interface approximation" a method for propagating electromagnetic fields through the smooth surface of an optical system.

Input: Gaussian beam Diameter 10 mm 9: Ray Tracing Result 3D - - × 3D View $\Box Q \leftrightarrow \bigcirc \bigcirc$ Here ×1 9.826 mm

Amplitude $E_x(x,y)$

simulation time < 1 sec

Irradiance pattern is morphing while propagation

Introduction

Inverse approach

- 1. functional embodiment: an ideal component function is introduced to realize the transmission between the two fields;
- 2. structure embodiment: suitable structure is developed to realize the functionality of the component.

Design Task: Focusing System

Task description: for an given spherical wave, to design an optical element to focus it with a specific NA

The signal field is considered as a spherical wave.

Design Process: Functional Embodiment

The element is considered as a phase only function, which is the subtraction of the phase from input and output field: $\varphi(x, y) = \varphi^{out}(x, y) - \varphi^{in}(x, y)$

Design Process: Structure Embodiment

Simulation with Designed Result

Design Process: Structure Embodiment

Algorithm in brief:

- 1. propagate \rightarrow phase on reference plane $\varphi^{in}(x, y)$, $\varphi^{out}(x, y)$
- 2. $\varphi^{in}(x, y)$, $\varphi^{out}(x, y) \rightarrow \text{local wave vectors } \mathbf{k}^{in}(x, y)$, $\mathbf{k}^{out}(x, y)$;
- 3. $\mathbf{k}^{in}(x, y), \mathbf{k}^{out}(x, y) \rightarrow \text{gradient of the surface } \nabla H(x, y);$

Design Process: Structure Embodiment

Algorithm in brief:

- 1. propagate \rightarrow phase on reference plane $\varphi^{in}(x, y)$, $\varphi^{out}(x, y)$
- 2. $\varphi^{in}(x, y)$, $\varphi^{out}(x, y) \rightarrow local$ wave vectors $\mathbf{k}^{in}(x, y)$, $\mathbf{k}^{out}(x, y)$;
- 3. $\mathbf{k}^{in}(x, y), \mathbf{k}^{out}(x, y) \rightarrow \text{gradient of the surface } \nabla H(x, y);$
- 4. fit the gradient by B-spline to obtain a surface;
- update the reference plane with the surface, and iteratively perform step 1 to 4 until a proper surface is obtained.

Application: Aberration Control in Image System

Application: Aberration Control in Image System

Design and Simulation Result

Design Task: Irradiance Redistribution

Task description: for a given input field, design an optical element to achieve required irradiance on target plane

The input field is given. The signal field is a freedom for the design.

Design Process: Functional Embodiment

Design Process: Functional Embodiment

Example: Homogeneous Irradiance

Task description: for an input Gaussian wave, design an optical element to achieve homogeneous irradiance on target plane

Example: Homogeneous Irradiance

Example: Specific Irradiance

irradiance on target plane

Conclusion

In summary:

- Modelling method is the basic for optical design;
- Base on the inverse approach, the directly design for the element structure is done in a fast way;
- The designed results can be used as the initial structure for further optimization.

Implementation

- All algorithms are implemented in the physical optics simulation and design software VirtualLab Fusion
- VirtualLab Fusion is developed, following the field tracing concept, by Wyrowski Photonics UG, Jena, Germany

Thank you