

SPIE Optical System Design 2018, Paper 10694-24

Semi-analytical Fourier transform and its application to physical-optics modelling

Zongzhao Wang^{1,2}, Site Zhang^{1,3}, Olga Baladron-Zorito^{1,2} and Frank Wyrowski^{1,3} ^[1] Institute of Applied Physics, Friedrich-Schiller-University Jena ^[2] LightTrans International UG, Germany ^[3] Wyrowski Photonics UG, Germany

Introduction

- Fast Fourier transform (FFT) in physical optics modeling and design.
 - Physical meaning: plane wave decomposition
 - Angular spectrum based algorithms: SPW, plane interface and etc.
- In practice, field with strong wavefront phase
 - huge numerical effort
 - 2π Modulus of phase: range of phase [- π , π]
 - wrapped phase
 - Nyquist theorem → sampling effort.
- Semi-analytical Fourier transform (SAFT)
 - rigorous approach
 - analytical handling of quadratic phase

Wavefront Phase of Electromagnetic Fields

Example: Laguerre Gaussian 01 Mode in Far Field Zone

Wavefront Phase

Quadratic Phase

Analytical Handling of Quadratic Phase

Derivation of Semi-analytical Fourier transform (SAFT)

- Fourier transform of quadratic phase term
 - Mathematic tool: Fresnel Integral

$$\int_{-\infty}^{\infty} e^{-ax^2 + bx + c} \mathrm{d}x = \sqrt{\frac{\pi}{a}} e^{\frac{b^2}{4a} + c}$$

- Analytical expression:

$$\mathcal{F}\left[e^{\mathrm{i}\psi_{\mathrm{q}}(\boldsymbol{\rho})}\right] = \sqrt{\frac{\mathrm{i}}{D_{x}}} \sqrt{\frac{D_{x}}{\mathrm{i}\gamma}} e^{\mathrm{i}\tilde{\phi}_{\mathrm{q}}(\boldsymbol{\kappa})} \qquad \text{with} \qquad \begin{array}{l} \tilde{\phi}_{\mathrm{q}}\left(\boldsymbol{\kappa}\right) = \frac{D_{y}k_{x}^{2} - Ck_{x}k_{y} + D_{x}k_{y}^{2}}{\gamma} \\ \gamma = C^{2} - 4D_{x}D_{y} \end{array}$$

Derivation of Semi-analytical Fourier transform (SAFT)

- Solving the convolution: $(\boldsymbol{\kappa} - \boldsymbol{\kappa}')^2 = \boldsymbol{\kappa}^2 - 2\boldsymbol{\kappa}\boldsymbol{\kappa}' + \boldsymbol{\kappa}'^2$ $\tilde{V}_{\ell}(\boldsymbol{\kappa}) = \frac{1}{2\pi} \tilde{U}_{\ell}^{\mathrm{res}}(\boldsymbol{\kappa}) * \boldsymbol{\mathcal{F}}\left[e^{\mathrm{i}\psi_{\mathrm{q}}(\boldsymbol{
 ho})}\right]$ $= \frac{1}{2\pi} \iint \tilde{U}_{\ell}^{\text{res}}(\boldsymbol{\kappa}') \sqrt{\frac{\mathrm{i}}{D_x}} \sqrt{\frac{D_x}{\mathrm{i}\gamma}} e^{\mathrm{i}\tilde{\phi}_{\mathrm{q}}(\boldsymbol{\kappa}-\boldsymbol{\kappa}')} \mathrm{d}k'_x \mathrm{d}k'_y$ $\begin{array}{c|c} \beta_x \\ \beta_y \\ \beta_y \end{array} = \left[\begin{array}{c} -\frac{2D_y}{\gamma} & \frac{C}{\gamma} \\ 0 \\ \frac{C}{\gamma} & -\frac{2D_x}{\gamma} \end{array} \right] \left[\begin{array}{c} k_x \\ k_y \\ k_y \\ \end{array} \right]$ $\tilde{V}_{\ell}(\boldsymbol{\kappa}) = \sqrt{\frac{\mathrm{i}}{D_x}} \sqrt{\frac{D_x}{\mathrm{i}\gamma}} e^{\mathrm{i}\tilde{\phi}_{\mathrm{q}}(\boldsymbol{\kappa})} \boldsymbol{\mathcal{F}}_{\boldsymbol{\beta}}^{-1} \left[\tilde{U}_{\ell}^{\mathrm{res}}(\boldsymbol{\kappa}) e^{\mathrm{i}\tilde{\phi}_{\mathrm{q}}(\boldsymbol{\kappa})} \right]$ $\boldsymbol{\mathcal{F}}_{\boldsymbol{\beta}}^{-1}\left[\tilde{U}_{\ell}^{\mathrm{res}}(\boldsymbol{\kappa})e^{\mathrm{i}\tilde{\phi}_{\mathrm{q}}(\boldsymbol{\kappa})}\right] \mathrel{\mathop:}= \tilde{A}_{\ell}^{\mathrm{res}}(\boldsymbol{\kappa})$
- Analytical expression of the spectrum

$$ilde{V}_{\ell}(\boldsymbol{\kappa}) = ilde{A}_{\ell}^{\mathrm{res}}(\boldsymbol{\kappa}) e^{\mathrm{i} ilde{\phi}_{\mathrm{q}}(\boldsymbol{\kappa})} \quad ext{with} \quad ilde{\phi}_{\mathrm{q}}(\boldsymbol{\kappa}) = rac{D_y k_x^2 - C k_x k_y + D_x k_y^2}{\gamma} ext{ and } \quad \gamma = C^2 - 4 D_x D_y$$

Derivation of Semi-analytical Fourier transform (SAFT)

- Residual field and analytical quadratic phase $V_{\ell}(\boldsymbol{\rho}) = U_{\ell}^{\mathrm{res}}(\boldsymbol{\rho})e^{\mathrm{i}\psi_{\mathrm{q}}(\boldsymbol{\rho})}$ $\psi_{\mathrm{q}}(\boldsymbol{\rho}) = D_{x}x^{2} + Cxy + D_{y}y^{2}$
- 2 x FFT

2 x pointwise operation

 Residual spectrum and analytical quadratic phase

$$ilde{V}_{\ell}(\boldsymbol{\kappa}) = ilde{A}^{\mathrm{res}}_{\ell}(\boldsymbol{\kappa}) e^{\mathrm{i} ilde{\phi}_{\mathrm{q}}(\boldsymbol{\kappa})}$$

$$\tilde{\phi}_{\mathbf{q}}\left(\boldsymbol{\kappa}\right) = \frac{D_{y}k_{x}^{2} - Ck_{x}k_{y} + D_{x}k_{y}^{2}}{\gamma}$$

Application of SAFT to physical-optics modelling

Example 1: Gaussian Beam Propagation

- Rigorous SPW method
 - FFT
 - Propagating kernel
 - IFFT
- Three tests:
 - Paraxial Fundamental Gaussian
 - Non-Paraxial Fundamental Gaussian
 - Laguerre Gaussian

Simulation Results 1.1: Paraxial Fundamental Gaussian

Simulation Results 1.1: Paraxial Fundamental Gaussian

Simulation Results 1.2: Non-Paraxial Fundamental Gaussian

Analysis of Numerical Effort

Paraxial Fundamental Gaussian

www.LightTrans.com

Non-Paraxial Fundamental Gaussian

Analysis of Numerical Effort

• propagating kernel: $e^{ik_z(\kappa)z}$

$$k_z\left(\boldsymbol{\kappa}\right) = \sqrt{k_0^2 - k_x^2 - k_y^2}$$

- extract the quadratic phase:
 - Taylor expansion around the center: paraxial approximation

$$k_z\left(\boldsymbol{\kappa}\right) pprox k_0 - rac{1}{2}\left(k_x^2 + k_y^2
ight)$$

- Paraxial beam (dash-line)
- Non-paraxial beam (solid-line)
- non-paraxial cases: approximation performs worse → more sampling effort of residual field

Simulation Results 1.3: Laguerre Gaussian

(95 x 95)

(21 x 21)

(157 x 157)

(d) z = 50 um

[1 V/m]

85 um

0.06

 (a) = 0
(a) $z = 0$

(a)

(b)

(c)

(d)

z = 0 (initial field)

 $z = 0.3z_{R} = 1 \text{ um}$

 $z = 1.6z_{R} = 5 \text{ um}$

 $z = 17z_{R} = 50 \text{ um}$

Example 2: (a) Focusing of Aberrated Spherical Wave

Example 2: (b) E_z Calculation

Example 2: Focusing of Spherical Wave and E_z Calculation

Conclusion

- We present the theory of SAFT
 - analytical handling of quadratic phase
 - rigorous derivation process
 - replace the FFT of the fully sampled field by two FFTs of complex functions which require significantly fewer sampling points
- Two groups of numerical examples are shown to demonstrate the potential of this approach.
 - valid for the field with strong quadratic phase
 - the sampling effort of SAFT only depends on the residual field
 - dramatically reduce the sampling effort

Thank you for your attention!