

SPIE Paper 10694-21 11:10-11:30

Fast Propagation of Electromagnetic Fields through Graded-Index (GRIN) Media

Huiying Zhong^{1,2}, Site Zhang^{1,2}, Rui Shi¹, Christian Hellmann³, Frank Wyrowsk¹

- 1. Friedrich Schiller University Jena
- 2. LightTrans International UG
- 3. Wyrowski Photonics UG

Introduction: GRIN Media in Real Life

- Graded-Index (GRIN) meida are widely used for modeling different situations \bullet
 - Applications
 - multi-mode fiber
 - optical lenses
 - acousto-optical modulators
 - Undesired situations
 - stress or heating induced GRIN variations
 - turbulence in air

Introduction: GRIN Media in Real Life

- Graded-Index (GRIN) meida are widely used for modeling different situations
 - Applications
 - multi-mode fiber
 - optical lenses
 - acousto-optical modulators
 - Undesired situations
 - stress or heating induced GRIN variations

Task: How to model light propagation in GRIN media?

Ray and Physical Optics

GRIN Media: Ray Optics

Solution of the Ray Equation

Ray equation for GRIN media

$$\frac{d}{ds}[n(\mathbf{r})\frac{d\mathbf{r}}{ds}] = \mathbf{\nabla}n(\mathbf{r})$$

Runge-Kutta methods

[5] A. Sharma *et al.* Tracing rays through graded-index media: a new method. *Appl. Opt.*, **21**(6): 984-987 **1982**

Solution of the Ray Equation

Ray equation for GRIN media

$$\frac{d}{ds}[n(\mathbf{r})\frac{d\mathbf{r}}{ds}] = \mathbf{\nabla}n(\mathbf{r})$$

Runge-Kutta methods

[5] A. Sharma *et al.* Tracing rays through graded-index media: a new method. *Appl. Opt.*, **21**(6): 984-987 **1982**

GRIN Media: Physical Optics

Solution of Maxwell Equations

- Mode solvers for highly symmetric structure
 - \rightarrow Not valid when symmetry decreases
 - → Numerical effort is high when size of structure increase
- Universal Maxwell solvers: Finite element method (FEM) and Fourier modal method (FMM) + perfectly matched layers (PMLs)
 - → Numerical effort is quite high when size of structure increase

Develop a fast approach to model electromagnetic field through GRIN media!

Field Representation

A rigorous representation of the electromagnet fields

$$E(r,\omega) = E_0(r,\omega) \exp[i\psi(r,\omega)], \qquad (1)$$

$$H(r,\omega) = H_0(r,\omega) \exp[i\psi(r,\omega)].$$
 (2)

 $\psi(\mathbf{r}, \omega)$ is a common phase function, extracted from electromagnetic field. No approximation!

Geometric Field Zone

A rigorous representation of the electromagnet fields

$$E(r,\omega) = E_0(r,\omega) \exp[i\psi(r,\omega)], \qquad (1)$$

$$H(\mathbf{r},\omega) = H_0(\mathbf{r},\omega) \exp[i\psi(\mathbf{r},\omega)].$$
 (2)

For some EM-field, we could found a proper $\psi(\mathbf{r}, \omega)$ so that the field behaviour is dominated by the phase part. More specifically,

- $E_0(\mathbf{r}, \omega)$ and $H_0(\mathbf{r}, \omega)$ varies slowly
- $\psi(\mathbf{r}, \omega)$ varies much faster

Geometric Field Equations

 $\nabla \times \mathbf{E}_0(\mathbf{r}) + i\nabla\psi(\mathbf{r}) \times \mathbf{E}_0(\mathbf{r}) - i\omega\mu_0\mathbf{H}_0(\mathbf{r}) = 0,$ $\nabla \times \mathbf{H}_0(\mathbf{r}) + i\nabla\psi(\mathbf{r}) \times \mathbf{H}_0(\mathbf{r}) + i\omega\epsilon_0n^2(\mathbf{r})\mathbf{E}_0(\mathbf{r}) = 0,$ $\nabla \cdot \mathbf{E}_0(\mathbf{r}) + i\mathbf{E}_0(\mathbf{r}) \cdot \nabla\psi(\mathbf{r}) + \mathbf{E}_0(\mathbf{r}) \cdot \nabla\ln n^2(\mathbf{r}) = 0,$ $\nabla \cdot \mathbf{H}_0(\mathbf{r}) + i\mathbf{H}_0(\mathbf{r}) \cdot \nabla\psi(\mathbf{r}) = 0.$

Maxwell Eqs.

```
\nabla \times \mathbf{E}(\mathbf{r}, \omega) = i\omega\mu_0 \mathbf{H}(\mathbf{r}, \omega),\nabla \times \mathbf{H}(\mathbf{r}, \omega) = -i\omega\epsilon_0 n^2(\mathbf{r}, \omega) \mathbf{E}(\mathbf{r}, \omega),\nabla \cdot [n^2(\mathbf{r}, \omega)\mathbf{E}(\mathbf{r}, \omega)] = 0,\nabla \cdot \mathbf{H}(\mathbf{r}, \omega) = 0,
```

Geometric field Eqs.

 $\nabla \psi(\mathbf{r}) \times \mathbf{E}_0(\mathbf{r}) = \omega \mu_0 \mathbf{H}_0(\mathbf{r}),$ $\nabla \psi(\mathbf{r}) \times \mathbf{H}_0(\mathbf{r}) = -\omega \epsilon_0 n^2(\mathbf{r}) \mathbf{E}_0(\mathbf{r}),$ $\nabla \psi(\mathbf{r}) \cdot \mathbf{E}_0(\mathbf{r}) = 0,$ $\nabla \psi(\mathbf{r}) \cdot \mathbf{H}_0(\mathbf{r}) = 0.$

• To solve geometric field equations for GRIN media, we get solution of how geometric field propagating through GRIN media.

• To solve geometric field equations for GRIN media, we get solution of how geometric field propagating through GRIN media.

• Rewrite field representation by using gradient theorem

$$E(r,\omega) = E_0(r,\omega) \exp[i\psi(r,\omega)], \qquad (1)$$

$$H(r,\omega) = H_0(r,\omega) \exp[i\psi(r,\omega)].$$
 (2)

• Rewrite field representation by using gradient theorem

$$E(r) = E_0(r) \exp\left\{i\left[\psi(r_0) + \int_{r_0}^r \nabla\psi(r) \cdot dr\right]\right\},\$$

$$H(r) = H_0(r) \exp\left\{i\left[\psi(r_0) + \int_{r_0}^r \nabla\psi(r) \cdot dr\right]\right\}.$$
Eq. of normalized field
$$n(r)\frac{d\hat{u}(r)}{ds} = -\left[\hat{u}(r) \cdot \frac{\nabla n(r)}{n(r)}\right]n(r)\frac{dr}{ds}$$
Ray Eq.
$$\frac{d}{ds}[n(r)\hat{s}(r)] = \nabla n(r).$$
Energy conservation

$$abla \cdot < S(r) >= 0.$$

Solving Ray & Normalized Field Eq.

Eq. of ray path $\frac{d}{ds}[n(r)\frac{dr}{ds}] = \nabla n(r)$

$$\begin{cases} dt = \frac{ds}{n} \\ T(r) = n(r)\frac{dr}{ds} \\ D(r) = n(r)\nabla n(r) \end{cases}$$

Runge-Kutta methods

$$\begin{cases}
A = \Delta t D(r_i) \\
B = \Delta t D(r_i + \frac{\Delta t}{2}T(r_i) + \frac{1}{8}\Delta t A) \\
C = \Delta t D(r_i + \Delta t T(r_i) + \frac{1}{2}\Delta t B) \\
T(r_{i+1}) = T(r_i) + \frac{1}{6}(A + 4B + C) \end{cases}$$

$$r_{i+1} = r_i + \Delta t \left[T(r_i) + \frac{1}{6}(A + 2B)\right]$$

$$\hat{s}(r_{i+1}) = \frac{T(r_{i+1})}{n(r_{i+1})}$$

$$n(\mathbf{r})\frac{d\hat{u}(\mathbf{r})}{ds} = -\left[\hat{u}(\mathbf{r})\cdot\frac{\boldsymbol{\nabla}n(\mathbf{r})}{n(\mathbf{r})}\right]n(\mathbf{r})\frac{d\mathbf{r}}{ds}$$

Summary of Geometric Solver in GRIN

20

Example: Multimode Fiber

- ray propagation through a GRIN fiber
- electromagnetic field propagation through a GRIN fiber by
 - a rigorous Maxwell solver, the Fourier Modal Method (FMM) with Perfectly Matched Layers (PMLs)
 - our newly developed very fast approximated Maxwell solver

Implementation of Refractive Index Distribution

Results: 3D System Ray Tracing

Results: Our Fast Approach vs FMM

Example: PSF of GRIN Lens

Example: PSF of GRIN Lens

Amplitude of the image [V/m]

Example: PSF of GRIN Lens

How to model such case that the input or output field is not geometric field?

Locally Polarized Harmonic Field Amplitude Zoom: 2.2571 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarized Harmonic Field Amplitude Zoom: 2.2095 (105; 105) at Locally Polarize

More Exploration of the Fast Solver

 $1000\;\mu m$

 $1000\;\mu m$

Paper 10694-26: The Gouy phase shift reinterpreted via the geometric Fourier transform (Olga Baladron-Zorita)

1000 µm

0

 $E_{\mathcal{Y}}\left[\frac{\mathsf{V}}{\mathsf{m}}\right]$

 $1000\ \mu m$

geometric solver

4

0

4.8

Concept of B-Operator

• B-operator

Concept of B-Operator

• B-operator

$$E^{\text{out}}(\boldsymbol{\kappa}) = \frac{1}{2\pi} \iint \widetilde{B}(\boldsymbol{\kappa}, \boldsymbol{\kappa}') E^{\text{in}}(\boldsymbol{\kappa}') d\boldsymbol{\kappa}'$$
$$\begin{bmatrix} E_{x}^{\text{out}}(\boldsymbol{\kappa}) \\ 1 \end{bmatrix} \begin{bmatrix} \widetilde{B}_{xx}(\boldsymbol{k}, \boldsymbol{k}') \\ \widetilde{B}_{xx}(\boldsymbol{k}, \boldsymbol{k}') \end{bmatrix} \begin{bmatrix} \widetilde{B}_{yx}(\boldsymbol{k}, \boldsymbol{k}') \\ \widetilde{B}_{yx}(\boldsymbol{k}, \boldsymbol{k}') \end{bmatrix} \begin{bmatrix} E_{x}^{\text{in}}(\boldsymbol{\kappa}') \\ \widetilde{B}_{x}(\boldsymbol{k}, \boldsymbol{k}') \end{bmatrix}$$

How to calculate B-matrix?

B-Operator of Slab

B-Operator: Split-Step Method

• Review of split-step method

so the slab should be quite thin. Linear operation in spatial domain.

B-Operator: Wave Propagation Method

• Review of wave propagation method

$$\widetilde{\boldsymbol{E}}^{\text{out}}(\boldsymbol{\kappa}) = \frac{1}{2\pi} \iint \widetilde{\boldsymbol{E}}^{\text{in}}(\boldsymbol{\kappa}') e^{ik_z(\boldsymbol{\kappa}')\Delta z} \delta(\boldsymbol{\kappa}' - \boldsymbol{\kappa}) d\boldsymbol{\kappa}'$$

• Elementary B-operator is Parabasal TEA

Neglect the curvature of each ray, so the slab should be quite thin!

B-operator

- Input plane, define a grid of κ'
- For each κ'
 - Define input plane waves
 - $E_1^{\text{in}}(\rho') = \begin{pmatrix} 1\\0\\Z_1 \end{pmatrix} e^{i\kappa' \cdot \rho'}$ • $E_2^{\text{in}}(\rho') = \begin{pmatrix} 0\\1\\Z_2 \end{pmatrix} e^{i\kappa' \cdot \rho'}$

with
$$\boldsymbol{\rho}' = (x', y')$$

- Calculate the output field $E_1^{out}(\rho)$ and $E_2^{out}(\rho)$
- Calculate the spectrum $\widetilde{E}_1^{out}(\kappa)$ and $\widetilde{E}_2^{out}(\kappa)$

• For each κ' , we have $\widetilde{E}_1^{\text{out}}(\kappa)$ and $\widetilde{E}_2^{\text{out}}(\kappa)$

• For each κ' , we have $\widetilde{E}_1^{\text{out}}(\kappa)$ and $\widetilde{E}_2^{\text{out}}(\kappa)$

Diffractive Field: Fiber

Diffractive Field: Fiber

deviation (geometric+B v.s. FMM)

Deviation < 1% B-matrix calc: ~5 min Integral calc: ~8 min

Calculation of Focus in Multimode Fiber

Problem Statement

Conclusion and Outlook

- Field propagation through GRIN media
 - Geometric solver
 - B-operator of GRIN media
 - Elementary B: geometric solver
 - What is the elementary B-operator of split-step method and wave propagation method
- Calculation of B-operator need most time.
 - Just calculate $\widetilde{B}(\kappa,\kappa')$ for a few κ'_0
 - $\widetilde{B}(\kappa,\kappa') =: \widetilde{B}(\kappa,\kappa'_0)$ for $||\kappa'-\kappa'_0|| < \delta$
 - $\widetilde{B}(\kappa,\kappa') =: \widetilde{B}(\kappa,\kappa'_0 + \delta\kappa')$ with $\delta\kappa' = \kappa' \kappa'_0$

Thank you!

Implementation

- All algorithms are implemented in the physical optics simulation and design software **VirtualLab Fusion**
- VirtualLab Fusion is developed, following the field tracing concept, by Wyrowski Photonics UG, Jena, Germany
- Visit our booth @booth B63 for more infomation

Reference

- [1] <u>www.thorlab.de</u>
- [2] https://lp.uni-goettingen.de
- [3] <u>www.bgr.com</u>
- [4] slideplayer.com/slide/8658764/
- [5] A. Sharma *et al.* Tracing rays through graded-index media: a new method. *Appl. Opt.*, **21**(6): 984-987 (1982)
- [6] M. Born and E. Wolf, Principles of Optics, Cambridge University press (1999)
- [7] Huiying Zhong et al, Fast propagation of electromagnetic fields through graded-index media, J. Opt. Soc. Am. A 35, 661-668 (2018)
- [8] M. D. Feit and J. A. Fleck, "Light propagation in graded-index optical fibers," *Appl. Opt.* **17**,3990–3998 (1978).
- [9] Brenner, K.-H. & Singer, W. Light propagation through microlenses: a new simulation method *Appl. Opt., OSA,* **1993**, *32*, 4984-4988