Friedrich-Schiller-Universität Jena

Fast Physical-Optics Modeling of Microscopy System with Structured Illumination

Rui Shi^{1,2}, Norik Janunts⁴, Rainer Heintzmann⁴, Christian Hellmann³, and Frank Wyrowski¹

¹ Applied Computational Optics Group, Friedrich Schiller University Jena, Jena, Germany,

² LightTrans International UG, Jena, Germany,

³ Wyrowski Photonics UG, Jena, Germany,

⁴ Biomedical Imaging Group, Leibniz Institute of Photonic Technology (IPHT), Jena, Germany

Background

• One-photon florescence microscopy

Background: Higher Resolution

STED

[Hell et al., Opt. Lett. (1994)]

[Heintzmann et al., **Brief Funct Genomic Proteomic**(2006)]

- resolution: ~20 nm
- high power

STORM

[Betzig et al., Science (2006)]

- resolution: ~20 nm
- low speed

SIM

[Heintzmann et al.,**Proc. SPIE** 1998] [Gustafsson, **J. Microsc**(2000)]

- resolution: ~80 nm
- low power and high speed

Motivation and Configuration

- Electric energy density
 - $w_e \propto \parallel E \parallel^2$
- Contrast:

$$c = \frac{w_{e,\text{ave}}^{\text{max}} - w_{e,\text{ave}}^{\text{min}}}{w_{e,\text{ave}}^{\text{max}} + w_{e,\text{ave}}^{\text{min}}}$$

Best: c = 1

• Homogeneity:

$$\sigma = \frac{w_{e,\max}^{\max} - w_{e,\min}^{\max}}{w_{e,\max}^{\max} + w_{e,\min}^{\max}}$$

Best: $\sigma = 0$

- Polarization
- Diffraction from aperture
- Inclined illumination on blazed grating

Theory: Field Tracing

The concept of bidirectional operators and its application to the modelling of microstructures Paper 10694-15, Prof.Frank Wyrowski

Simulation Results via VirtualLab Fusion

Polarization

Modeling Task

Lens	Property
lens 1, 2	Thorlab AC254 double achromat
Tube lens	Nikon 200 mm
Objectives	Nikon 60X, NA=1.4, Effective NA: ~1.12 apochromatic

J. A. Kurvits et al., J. Opt. Soc. Am. (2015)

Result: Energy Density

Diffraction from Aperture

Modeling Task

11

Result: Energy Density

Result: Energy Density and Homogeneity

Inclined Illumination on Blazed Grating

Modeling Task

Result: Diffraction Angle and Efficiency

Result: Diffraction Angle and Efficiency

Result: Diffraction Angle and Efficiency

Results: Energy Density

Results: Energy Density

Conclusion and Outlook

- The complexity of microscopy system with structured illumination makes it vulnerable to the undesired effects which causes the inhomogeneity and low contract of the interference pattern.
- These effects should be analyzed and taken into account in the image reconstruction algorithm.
- In case of deep tissue imaging, adaptive optics can be applied further to compensate the undesired effects.

