

Tokyo, 25th of April, 2018, OPIE Exhibition Talk 15:00 – 15:40

Non-Sequential Optical Modeling with VirtualLab Fusion

Hartwig Crailsheim (LightTrans International UG)

Non-Sequential Extension (NSE)

Since 2018 VirtualLab introduced the so-called

Non-Sequential Extension (NSE).

VirtualLab *without* NSE also allows non-sequential simulations namely by explicit specification of all light paths of interest.

→ With the NSE, setting up systems and analyzing the different light paths for investigational purposes become much easier, intuitive and adjustable.

What is Sequential and Non-Sequential Tracing?

Optical Modeling Task

Optical Modeling: Sequential

Optical Modeling: Non-Sequential

Collimation System: Sequential Simulation

Collimation System: Non-Sequential Simulation

Conclusion of First Question

What is sequential and non-sequential tracing?

- Users predefine the sequence of the components, and light propagation through follows the sequence.
- Light propagates through / reflects from one component just once.

- Light propagation does not follow any sequence.
- Light propagates through / reflects several times from one component.

Note: Linkages are still used, but only for the purpose of referencing (position/orientation).

Different Needs for Non-Sequentiality

A) for evaluation of undesired (detrimental) reflections

- ghost images effects
- stray light orders in waveguides
- ... (any back reflections between different surfaces in a system)
- B) for simulation of intended (necessary) reflections
 - systems with splitted light paths (e.g. any interferometer setup)
 - systems with folded light paths (e.g. diverse telescope setups)
 - etalons
 - ... (whatever system makes use of multiple or reflected light paths)

Unwanted Multiple Reflections / Light Paths

Setup with & without Non-Sequential Extension (NSE)

Back Reflection in Bi-Convex Lens

ray & field tracing simulation without back reflections

Setup in VirtualLab **Exclusive** Non-Sequential Extension (NSE)

without reflections

with reflections

sequential setup \Rightarrow sequential simulation

complex setup WAS necessary for non-sequential simulation

Setup in VirtualLab Inclusive Non-Sequential Extension (NSE)

Flag: Non-Sequential Tracing = <u>False</u>

Flag: Non-Sequential Tracing = True

difference for setup = 1 Double CLICK !

Energy Consideration

- collimation objective lens example
- near-eye display (NED) waveguide example

Accurate Representation of Resulting Light

- Non-sequential simulations require the accurate consideration of energy conservation.
- It is of paramount importance to know how much energy the different deflected light portions carry.

Knowing Which Light Paths Are of Significance

How to Enable Sequential and Non-Sequential Tracing?

→ Channel Concept

Surface Channels

• Setting A

Surface	+/+	+/-	-/-	-/+
1st	×			
2nd	×			

• Setting B

 Surface
 +/+
 +/ -/ -/+

 1st
 ×
 ×

• Setting C

Surface	+/+	+/-	-/-	-/+
1st	×		×	
2nd		×		

Surface Channels

• Setting D

• Setting E

Surface	+/+	+/-	-/-	-/+
1st	×	×	×	×
2nd	×	×	×	×

Etalon Example

with regard of polarization of incident light

Optical Etalon

- Configuration of input field
 - plane wave
 - Polarization (try both)
 - E_x -polarized
 - E_y -polarized
- Configuration of etalon
 - cylindrical-planar
 - center thickness 700 µm
 - cylindrical surface radius 1 m

x polarized light

y polarized light

related sample file: 01_Etalon.lpd

Conclusion of Second Question

How to enable sequential and non-sequential tracing?

Interferometer Example

Michelson type

Michelson Interferometer Specification

Michelson Interferometer Setup

setup with NSE (*)

(*) if system is based on nonsequential effect, and system is build with NSE, simulation does not make sense with deactivated NSE.

Michelson Interferometer Simulation \rightarrow Result (3D Ray Tracing)

Michelson Interferometer Simulation → Results (Field Tracing) 1

simulation time without NSE: ~3s simulation time with NSE: ~ 2s

inverse rainbor colors

Michelson Interferometer Simulation → Results (Field Tracing) 2

simulation with

 varying distances of movable mirror (from -600 μm to +600 μm)

Michelson Interferometer Simulation → Results (Field Tracing) 3

simulation with

- varying distances of movable mirror (from -600 μm to +600 μm)
- and fixed mirror with slight curvature (10m radius)

Telescope Example

Herrig Schiefspiegler type

Modeling Task

related sample file: 03_Herrig Schiefspiegler Telescope.lpd

Ray Tracing System Analyzer Result

Field Tracing Results (PSFs) with Different Incident Angles

(0.2°, 0.2°)

 $(0.6^{\circ}, 0.6^{\circ})$

Non-sequential field tracing for the PSF calculation, including double-pass between two mirrors, takes less than 10 seconds

Conclusion

- VirtualLab Fusion offers both, sequential and non-sequential ray & field tracing!
 - with total control of investigations of relevant light paths (energy consideration)
- Modeling of a lot of applications take advantages of non-sequential tracing.

