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Physical-optics view on light shaping



Shaping the Far Field of an Incident Light Beam

Optical >
Element (OE)

1L(p)
| | Vo) o VO (p)| s
In far field zone
POE >
PTarget

« For a field in a plane we use the notation p = (x,y) and
Vi(p) = (Ez(p); Ey(p)).

« In k-domain we obtain V| (k) = F.V 1 (p) with & = (k. k)
and the Fourier transfrom operator F .
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Shaping the Focal Region of an Incident Light Beam
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Shaping the Far Field of an Incident Light Beam
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Design task: Shape the irradiance/illuminance (or other radiometric/photometric
guantities) on the target plane. The connection of the field V(jE\pTarget and the
radiometric/photometric quantities can be determined locally in any position p.




Shaping the Far Field of an Incident Light Beam
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Shaping the Far Field of an Incident Light Beam
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Shaping the Far Field of an Incident Light Beam
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Mathematical Formulation in Field Tracing Diagram
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Mathematical Formulation in Field Tracing Diagram
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Modeling of optical
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Mathematical Formulation in Field Tracing Diagram

Space domain  (p,w)

Fourier domain (k,w)

planes

Optical >
Element(y
Vip OB
E \ ( )| Target
VI (p)lpor in far {i)elg zone
PTarget
Vin VOE . . \
1 & Typically a phase-only effect is preferred:
' BOE
OE . OE
7 VPR(p) = Vit (p) exp (1A (p))
J
¥ o
V?_E| OE X eXp(iszZ) ‘N/ |Ptarget
[ |
POE Ptarget




Mathematical Formulation in Field Tracing Diagram
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Systematic Understanding of Shaping Concepts

 Light shaping is done by freeform
* surfaces, DOE’s, beam splitters,

(  diffusers, lens arrays, and other
Vi(p [

VO o M types of optical elements.
.\ » All follow the same physical optics
e modeling description (left), though
Vi VQE V OF |prarget ' '
o _¥ | some of them are discussed in ray
S - optics and some in diffractive
optics.
(k,w) 2013 . ~ OE
V0 pon X exp(ik:A2) VL prarec  How can that be understood
| .
Panes e " mathematically?

* What are the consequences for
design strategies?




Systematic Understanding of Shaping Concepts
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The key for an answer

. / lies in the character of

= [b Tk, the Fourier transform!
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Modeling the Propagation Through a Stop
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Results of Fourier Transform
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Results of Fourier Transform
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Homeomorphic Fourier Transform
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Homeomorphic Fourier Transform
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Mathematical Formulation in Field Tracing Diagram
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Light Shaping and Homeomorphic Operations
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Light Shaping and Homeomorphic Operations
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Light Shaping and Homeomorphic Operations
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Light Shaping and Homeomorphic Operations
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Light Shaping by Fully Homeomorphic Operations
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Light Shaping by Fully Homeomorphic Operations
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Freeform Design for Light Shaping (Homeomorphism)
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Freeform Design for Light Shaping (Homeomorphism)
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Prins, C, et al. A Least-Squares Method for Optimal Transport Using the Monge--Ampere
Equation SIAM Journal on Scientific Computing, 2015, 37, B937-B961




Freeform Design for Light Shaping (Homeomorphism)
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Freeform Design for Light Shaping

Optical —>
Element (OE) ¢
Vip — OE
1 e Vl ( )| Target
__‘ZE in far {i)elg zone
pOE -
PTarget
Vlf VSE Y &Y N
BO® Design assumes
homeomorphic zone. Is
that true?
VJ_ |POE L [FTTeTT 04 02 0 02 04 o4
I I X [mm]

POE Ptarget




Freeform Design for Light Shaping
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Freeform Design for Light Shaping
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Freeform Design for Light Shaping: High Divergence
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Freeform Design for Light Shaping: High Divergence
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Light Shaping by Fully Homeomorphic Operations
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Light Shaping by Diffractive Optics
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Light Shaping by Diffractive Optics
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Light Shaping by Diffractive Optics
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Point Cloud Generation
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Light Shaping by Diffractive Optics
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Light Shaping by Diffractive Optics
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Freeform Design for Light Shaping
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Initialization of IFTA by Homeomorphism
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Physical-optics view on light shaping

... enables a deep understanding of light shaping ranging
from pure ray optics to diffractive optics. The transition
between both can be mastered with one unifying theory!



VirtualLab Light Shaping Solutions

 We prepare a new VirtualLab
product for Light Shaping to be
released in 2019.

|t will be based on our developed
theoretical understanding and
provide the tremendous benefits to
the illumination and lighting experts
and the photonics community in
general.
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FAST PHYSICAL OPTICS SOFTWARE




VirtualLab lllumination Solutions: Point Cloud
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VirtualLab lllumination Solutions: Diffuser
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VirtualLab Light Shaping Solutions
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