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Make physical optics the platform in optical modeling



Paradigm Shift in Optical Modeling Needed

• Status quo: Ray optics is currently used as the platform in optical modeling. 

Physical optics “patches” are added where most needed. 

Physical Optics
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Paradigm Shift in Optical Modeling Needed

• Status quo: Ray optics is currently used as the platform in optical modeling. 

Physical optics “patches” are added where most needed. 

Working in a subset 

necessarily limits 

innovative workflows!
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Make Physical Optics the Platform in Optical Modeling

• Status quo: Ray optics is currently used as the platform in optical modeling. 

Physical optics “patches” are added where most needed. 

• Our proposal: To make physical optics the platform in optical modeling, with 

ray tracing solidly embedded within.
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Make Physical Optics the Platform in Optical Modeling

• Status quo: Ray optics is currently used as the platform in optical modeling. 

Physical optics “patches” are added where most needed. 

• Our proposal: To make physical optics the platform in optical modeling, with 

ray tracing solidly embedded within.

For this paradigm shift physical 

optics must be fast in practice!
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Fast Electromagnetic Modeling Required

• Physical optics modeling must be based on 

solutions of Maxwell’s equations. 

LightTrans International12



Fast Electromagnetic Modeling Required

• Physical optics modeling must be based on 

electromagnetic field solvers. 

How to realize a fast electromagnetic 

modeling in optics? 
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Field tracing enables fast physical optics



Field Tracing Enables Fast Physical Optics

Field Tracing comprises: 

• Application of different 

electromagnetic field solvers in 

different regions of one system. 

• Interconnection of any type of 

general and specialized field solver. 
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Field Tracing Enables Fast Physical Optics

Field Tracing comprises: 

• Application of different 

electromagnetic field solvers in 

different regions of one system. 

• Interconnection of any type of 

general and specialized field solver. 

• Source mode concept to represent 

coherent, partially coherent, and 

incoherent sources.

• … and many more techniques 
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Physical Optics Enables Theoretically Solid Inclusion of …. 

• Investigation of fields in focal regions

• Diffraction at apertures and of light beams

• Vectorial effects and polarization; no paraxial assumption

• Coherence phenomena and source models

• Ultrashort pulse modeling 

• Interference and speckles

• Diffraction at gratings and diffractive optical elements

• Scattering effects 

• Crystal and metamaterial modeling 

• Nano- and microoptics

• Special effects like Gouy phase shift and Goos Hänchen shift

• Nonlinear optics
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Why Physical Optics?

• Modern interferometers may use …

− … advanced light sources 

− … innovative optical components

− … different types of detectors

− … complex light paths
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Field Tracing Enables Fast Physical Optics

Field Tracing comprises: 

• Application of different 

electromagnetic field solvers in 

different regions of one system. 

• Interconnection of any type of 

general and specialized field solver.

• Source mode concept to represent 
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Coherence Measurement Using Michelson 

Interferometer and Fourier Transform Spectroscopy



Modeling Task

fundamental Gaussian
(central wavelength 635 nm)

a) bandwidth 50 nm

b) bandwidth 100 nm

detector

change of the lateral interference 

fringes for different d values

movable

mirror

fixed mirror

shift 

distance d

28

point-wise measurement 

with respect to d values

…

LightTrans International

Coherence property 

of source is under 

investigation!



Lateral Interference Fringes – 50 nm Bandwidth

29

fundamental Gaussian
(central wavelength 635 nm)

a) bandwidth 50 nm shift 

distance d

d=0 d=1µm d= 2µm

LightTrans International

Fringe contrast 

changes along 

lateral position.



Lateral Interference Fringes – 100 nm Bandwidth

30

shift 

distance d

d=0 d=1µm d= 2µm

fundamental Gaussian
(central wavelength 635 nm)

b) bandwidth: 100 nm

Broader spectral bandwidth leads to 

shorter coherent length; and therefore 

the interference fringe starts to vanish 

sooner in comparison to the case with 

narrower bandwidth.

LightTrans International

Almost NO 

interference 

fringe visible!



Pointwise Measurement 
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fixed mirror
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distance d

50nm bandwidth

100nm bandwidth
fundamental Gaussian

(central wavelength 635 nm)

a) bandwidth 50 nm

b) bandwidth 100 nm
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VirtualLab Fusion Technologies
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Fizeau Interferometer for Optical Testing



Modeling Task

spherical wave
- wavelength 532nm

- half-opening angle 

26.6°

collimation 

lens

beam 

splitter

imaging 

lens

reference

flat
test 

flat

detector

?
How does the interference 

fringe change for different 

test flats?

34 LightTrans International

Different surface 

profiles are under 

investigation



Tilted Planar Surface under Observation

reference 

flat

detector

tilted planar 

surface

Reflection from the test planar surface remain 

as plane waves, but only with slightly different 

direction, and therefore leading to parallel 

striped fringes. 

35 LightTrans International



Cylindrical Surface under Observation

reference 

flat

detector

cylindrical 

surface

Reflected wavefront from the test cylindrical 

surface gets curved in one direction, therefore 

leading to parallel striped fringes but with 

varying pitch.

36 LightTrans International



Spherical Surface under Observation

reference 

flat

detector

spherical 

surface

Spherical surface changes the reflected 

wavefront in radial direction, thus the 

interference fringes appears as concentric rings.

37 LightTrans International
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Mach-Zehnder Interferometer



Modeling Task

He-Ne laser
- fundamental Gaussian

- wavelength 632.8 nm

3x beam expander

beam splitter

beam splitter

2 mm

2 mm

B
K

7
B

K
7

reference path

test path
(test object may tilt and/or shift)

?

How to calculate 

interference fringe with the 

possible shift and tilt of 

components considered?

40 LightTrans International

Misalignment of 

components is 

considered.



Interference Fringe Due to Component Tilt

tilt 

angle

Calculation of interference 

pattern including element tilt 

takes less than 2 seconds!
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Interference Fringe Due to Component Shift

shift

Calculation of interference 

pattern including element shift 

takes less than 2 seconds!
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Polarization Interference



Modeling Task
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He-Ne laser
- fundamental Gaussian

- wavelength 632.8 nm

3x beam expander

beam splitter

beam splitter

2 mm

2 mm

B
K

7
B

K
7

?

interference

polarizer

(fixed)

polarizer

(rotatable)

How does the 

interference pattern 

change with respect 

to the polarization 

states of two arms?

LightTrans International

Polarization 

effects are of 

importance here!



Interference Pattern Changes with Polarizer Rotation

polarizer

(rotatable)

polarizer

(fixed)

polarizer rotation by 0° polarizer rotation by 45°

polarizer rotation by 75° polarizer rotation by 90°

Interference fringes start to 

disappear, when polarizer 

rotates from parallel to 

orthogonal orientation.

LightTrans International45

Interference 

disappears 

completely!



Interference Pattern Changes with Polarizer Rotation

polarizer

(rotatable)

polarizer

(fixed)

polarizer rotation by 0°

polarizer rotation by 75°

LightTrans International46

Fringe contrast 

changes with 

polarizer rotation.



Interference Pattern

polarizer

(x-direction)

polarizer

(x-direction)

polarizer

(y-direction)

parallel polarizers

crossed polarizers

LightTrans International47

Interference 

information is encoded 

in polarization state!



Examination of Sodium D Lines with Etalon



Modeling Task

49

input spherical wave
- sodium D lines 

@ 588.995 nm & 589.592 nm

- linearly polaried 

along x direction

- half divergent angle is 2.3°

d1 = 70 mm

d2 = 1.686 mm

d3 = 10 mm d5 = f = 100 mm

d4 = 4.3 mm

fused silica

silica-spaced etalonHR - coating
- reflectance ≈ 80%  

- thickness ≈ 530 nm

- material: Silicon Dioxide 

& Titanium Dioxide 

spherical lens
- type: plano – convex

- radius = 51.94 mm

- material: N-BK7 ?

LightTrans International

Multiple reflections 

and corresponding 

interference …



Result: only Transmitted Field
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(reference: 50 orders)

sequential 

ray tracing

only transmission

from etalon

sequential field tracing
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Result: Transmitted Field + 2 Back Reflections
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(reference: 50 orders)

non-sequential 

ray tracing

multiple back reflections

from etalon

non-sequential field tracing
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Result: Transmitted Field + 4 Back Reflections
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(reference: 50 orders)
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Result: Transmitted Field + 6 Back Reflections
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(reference: 50 orders)

non-sequential 

ray tracing

multiple back reflections

from etalon

non-sequential field tracing
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Result: Transmitted Field + 18 Back Reflections
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(reference: 50 orders)

non-sequential 

ray tracing

multiple back reflections

from etalon

non-sequential field tracing

588.995 nm 

589.592 nm
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Result: HR-Coating Reflectance vs. Finesse
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Coating R = 60% @ 589nm Coating R = 90% @ 589nmCoating R = 80% @ 589nm
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Result: HR-Coating Reflectance vs. Finesse

Extract 1D data along the diagonal line The higher reflectance, the sharper interference stripe

R = 90% 

R = 60% 

R = 80% 

Higher finesse, 

higher contrast!
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Related Talks and Poster Presentations

• Talk: How the design concepts of high-NA beam splitters and diffusers, as 

well as of beam shapers by freeform surfaces are related
Time & Location: Wednesday, 6 February | 16:30 – 16:50, Room 210

• Talk: Physical-optics modeling of diffractive/meta-lenses and their design 
Time & Location: Wednesday, 6 February 2019 | 17:10 – 17:30, Room 210

• Poster: Design of single-mode fiber coupling lenses and tolerance analysis
Time & Location: Tuesday, 5 February 2019 | 18:00 – 20:00, Golden Gate Ballroom

• Poster: Design and optimization strategy of incoupling gratings for near-eye 

displays 
Time & Location: Wednesday, 6 February 2019 | 18:00 – 20:00, Golden Gate Ballroom
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Workshops and Seminars

• SPIE Industry Workshop in cooperation with ZEMAX/OpticStudio® 

Modeling and design of diffractive and meta-lenses with VirtualLab Fusion
Time & Location: Wednesday, 6 February 2019 | 15:30 – 17:00, Room 12

• Free VirtualLab Fusion Seminar Thursday

VirtualLab Fusion Technology and Applications: 

Interferometry, Microscopy and Fiber Coupling
Time & Location: Thursday, 7 February 2019 | 09:00 – 13:00, 49 Geary Street

• Free VirtualLab Fusion Seminar Friday

Beyond Ray Tracing: Innovative Optical Design with Fast Physical Optics
Time & Location: Friday, 8 February 2019 | 09:00 – 16:00, 49 Geary Street

LightTrans International59


