

SPIE Photonics West 2019

Physical-Optics Simulation of Optical Interferometry Systems

Site Zhang¹, Huiying Zhong², Rui Shi², Christian Hellmann³, and Frank Wyrowski²

- ¹ LightTrans International UG, Jena, Germany
- ²Applied Computational Optics Group, Friedrich-Schiller-Universität Jena, Germany
- ³ Wyrowski Photonics GmbH, Jena, Germany

Jena, Germany

University of Jena

Wyrowski Photonics

LightTrans International

Optical Design Software and Services

Hall EF (North) booth 4545-46 German Pavilion

Make physical optics the platform in optical modeling

Paradigm Shift in Optical Modeling Needed

• **Status quo:** Ray optics is currently used as the platform in optical modeling. Physical optics "patches" are added where most needed.

Paradigm Shift in Optical Modeling Needed

• **Status quo:** Ray optics is currently used as the platform in optical modeling. Physical optics "patches" are added where most needed.

Make Physical Optics the Platform in Optical Modeling

- **Status quo:** Ray optics is currently used as the platform in optical modeling. Physical optics "patches" are added where most needed.
- **Our proposal:** To make physical optics the platform in optical modeling, with ray tracing solidly embedded within.

Make Physical Optics the Platform in Optical Modeling

- **Status quo:** Ray optics is currently used as the platform in optical modeling. Physical optics "patches" are added where most needed.
- **Our proposal:** To make physical optics the platform in optical modeling, with ray tracing solidly embedded within.

For this paradigm shift physical optics must be **fast** in practice!

Fast Electromagnetic Modeling Required

• Physical optics modeling must be based on solutions of Maxwell's equations.

Fast Electromagnetic Modeling Required

• Physical optics modeling must be based on electromagnetic field solvers.

How to realize a fast electromagnetic modeling in optics?

Field tracing enables fast physical optics

Field Tracing Enables Fast Physical Optics

Field Tracing comprises:

- Application of different electromagnetic field solvers in different regions of one system.
- Interconnection of any type of general and specialized field solver.

Field Tracing Enables Fast Physical Optics

Field Tracing comprises:

- Application of different electromagnetic field solvers in different regions of one system.
- Interconnection of any type of general and specialized field solver.
- Source mode concept to represent coherent, partially coherent, and incoherent sources.
- ... and many more techniques

٠	•	••	••••	00
•	:		:::	-
ŧ	÷			-
ŧ	÷	-		
ŧ	4	-		
ŧ	1			

Physical Optics Enables Theoretically Solid Inclusion of

- Investigation of fields in focal regions
- Diffraction at apertures and of light beams
- Vectorial effects and polarization; no paraxial assumption
- Coherence phenomena and source models
- Ultrashort pulse modeling
- Interference and speckles
- Diffraction at gratings and diffractive optical elements
- Scattering effects
- Crystal and metamaterial modeling
- Nano- and microoptics
- Special effects like Gouy phase shift and Goos Hänchen shift
- Nonlinear optics

Physical Optics Enables Theoretically Solid Inclusion of

- Investigation of fields in focal regions
- Diffraction at apertures and of light beams
- Vectorial effects and polarization; no paraxial assumption
- Coherence phenomena and source models
- Ultrashort pulse modeling
- Interference and speckles
- Diffraction at gratings and diffractive optical elements
- Scattering effects
- Crystal and metamaterial modeling
- Nano- and microoptics
- Special effects like Gouy phase shift and Goos Hänchen shift
- Nonlinear optics

Physical Optics Enables Theoretically Solid Inclusion of

- Investigation of fields in focal regions
- Diffraction at apertures and of light beams
- Vectorial effects and polarization; no paraxial assumption
- Coherence phenomena and source models
- Ultrashort pulse modeling
- Interference and speckles
- Diffraction at gratings and diffractive optical elements
- Scattering effects
- Crystal and metamaterial modeling
- Nano- and microoptics
- Special effects like Gouy phase shift and Goos Hänchen shift
- Nonlinear optics

- Modern interferometers may use ...
 - ... advanced light sources
 - ... innovative optical components
 - ... different types of detectors
 - ... complex light paths

- Investigation of fields in focal regions
- Diffraction at apertures and of light beams
- Vectorial effects and polarization; no paraxial assumption
- Coherence phenomena and source models
- Ultrashort pulse modeling
- Interference and speckles
- Diffraction at gratings and diffractive optical elements
- Scattering effects
- Crystal and metamaterial modeling
- Nano- and microoptics
- Special effects like Gouy phase shift and Goos Hänchen shift
- Nonlinear optics

Field Tracing Enables Fast Physical Optics

Field Tracing comprises:

- Application of different electromagnetic field solvers in different regions of one system.
- Interconnection of any type of general and specialized field solver.
- Source mode concept to represent coherent, partially coherent, and incoherent sources.
- ... and many more techniques

Coherence Measurement Using Michelson Interferometer and Fourier Transform Spectroscopy

Modeling Task

Lateral Interference Fringes – 50nm Bandwidth

Lateral Interference Fringes – 100nm Bandwidth

Pointwise Measurement

VirtualLab Fusion Technologies

LightTrans International

Fizeau Interferometer for Optical Testing

Modeling Task

Tilted Planar Surface under Observation

Cylindrical Surface under Observation

1.86

0.93

Spherical Surface under Observation

VirtualLab Fusion Technologies

Mach-Zehnder Interferometer

Modeling Task

Interference Fringe Due to Component Tilt

Calculation of interference pattern including element tilt takes less than 2 seconds!

Interference Fringe Due to Component Shift

Calculation of interference pattern including element shift takes less than 2 seconds!

Polarization Interference

Modeling Task

Interference Pattern Changes with Polarizer Rotation

Interference fringes start to disappear, when polarizer rotates from parallel to orthogonal orientation.

Interference Pattern Changes with Polarizer Rotation

Interference Pattern

Examination of Sodium D Lines with Etalon

Modeling Task

Result: only Transmitted Field

Result: Transmitted Field + 2 Back Reflections

Result: Transmitted Field + 4 Back Reflections

Result: Transmitted Field + 6 Back Reflections

LightTrans International

Result: Transmitted Field + 18 Back Reflections

LightTrans International

Result: HR-Coating Reflectance vs. Finesse

Coating **R = 60%** @ 589nm

31: 589	nm R = 60%		-
Light View	Data View		
mm 5.0001749526 mm	C		
-5.0001749526	5.0001749525 mm	4.9647124407 mm	
Light View		Zoom: 0.23837700761	-

Coating **R = 80%** @ 589nm

Coating **R = 90%** @ 589nm

Result: HR-Coating Reflectance vs. Finesse

Extract 1D data along the diagonal line

The higher reflectance, the sharper interference stripe

VirtualLab Technologies

Related Talks and Poster Presentations

- Talk: How the design concepts of high-NA beam splitters and diffusers, as well as of beam shapers by freeform surfaces are related Time & Location: Wednesday, 6 February | 16:30 – 16:50, Room 210
- Talk: Physical-optics modeling of diffractive/meta-lenses and their design Time & Location: Wednesday, 6 February 2019 | 17:10 – 17:30, Room 210
- **Poster**: Design of single-mode fiber coupling lenses and tolerance analysis Time & Location: Tuesday, 5 February 2019 | 18:00 – 20:00, Golden Gate Ballroom
- Poster: Design and optimization strategy of incoupling gratings for near-eye displays
 Time & Location: Wednesday, 6 February 2010 | 18:00 20:00, Goldon Cate Ballroom

Time & Location: Wednesday, 6 February 2019 | 18:00 – 20:00, Golden Gate Ballroom

Workshops and Seminars

- SPIE Industry Workshop in cooperation with ZEMAX/OpticStudio[®]
 Modeling and design of diffractive and meta-lenses with VirtualLab Fusion
 Time & Location: Wednesday, 6 February 2019 | 15:30 17:00, Room 12
- Free VirtualLab Fusion Seminar Thursday VirtualLab Fusion Technology and Applications: Interferometry, Microscopy and Fiber Coupling Time & Location: Thursday, 7 February 2019 | 09:00 – 13:00, 49 Geary Street
- Free VirtualLab Fusion Seminar Friday
 Beyond Ray Tracing: Innovative Optical Design with Fast Physical Optics
 Time & Location: Friday, 8 February 2019 | 09:00 16:00, 49 Geary Street