

5 February 2020, Product Demo at Photonics West 2020

Diffractive and Metasurfaces: from Function to Structure Simulation Seamlessly in VirtualLab Fusion

Stefan Steiner, PhD LightTrans International UG Jena, Germany

Teams

(since 2014)

photo from wikitravel

Optical Design Software and Services

Physical-Optics System Modeling

Physical-Optics System Modeling

Physical-Optics System Modeling

Connecting Optical Technologies / Maxwell Solvers

Connecting Optical Technologies / Maxwell Solvers

Problem:

Application of a single field solver, e.g. FEM or FDTD, to the entire system: **Unrealistic numerical effort**

Solution:

- Decomposition of system and application of regional field solvers.
- Interconnection of different solvers and so to solve the complete system.

VirtualLab Fusion – Diffractive Optics Applications

nonlinear free crystals & compon... space anisotropic prisms, plates, components cubes, ... waveguides & lenses & fibers freeforms Selection of apertures & VirtualLab Fusion scatterer Field boundaries applications for Solvers diffusers metasurfaces gratings diffractive, Fresnel, diffractive beam meta lenses splitters

SLM & adaptive

components

micro lens &

freeform arrays

HOE, CGH, DOE

General Design Procedure

Blazed Meta-Grating Composed of Square Pillars

P. Lalanne, *et al.*, "Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings," Opt. Lett. 23, 1081-1083 (1998)

Fig. 2. Scanning-electron micrograph of the blazed binary subwavelength grating. The horizontal period (along the x axis) is 1.9 μ m, and the period in the perpendicular direction (y axis) is equal to the sampling period (380 nm). The maximum pillar aspect ratio is 4.6.

Building Block / Unit Cell Analysis

Building Block / Unit Cell Analysis

transmission amplitude/phase vs. pillar diameter (@633nm)

Blazed Metagrating_01_Single Pillar ...

Distribution of Cells → Linear Phase

Distribution of Cells → Linear Phase

Performance Evaluation: Transmitted Phase Distribution

Performance Evaluation: Transmitted Phase Distribution

Performance Evaluation: Diffraction Efficiency

grating performance evaluation

	Efficiency
TE-polarization	80.2%
TM-polarization	74.2%
Average	77.2%

Same average efficiency value reported in P. Lalanne, *et al.*, Opt. Lett. 23, 1081-1083 (1998)

Post-Optimization of Metagrating

downhill simplex optimization with FMM/RCWA for grating analysis

Blazed Metagrating_03_Parametric Optimization

Post-Optimization: Initial vs. Optimized Structure

Design of Meta-Grating as Large-Angle Spot Projector

Design Task

Desired Phase Profile Design (IFTA)

Building Block / Unit Cell Analysis

2D Metagrating_01_Single Pillar Analysis ...

Distribution of Cells

Performance Evaluation: Initial Design

Post-Optimization of Metagrating (PV Uniformity Error)

initial structure

- keep pillar positions
- varying pillar diameters
- 25 variables in total

downhill simplex optimization with FMM/RCWA for grating analysis

Post-Optimization of Metagrating (RMS Uniformity Error)

initial structure

- keep pillar positions
- varying pillar diameters
- 25 variables in total

downhill simplex optimization with FMM/RCWA for grating analysis

Cross-Platform Simulation and Optimization

Evaluation of Optimized Metasurface Design

Modeling a VCSEL-Based Spot Projector

Modeling Task

* The aspherical lens in the document is designed with Zemax OpticStudio[®]

VirtualLab Fusion Technologies

lenses &

freeforms

apertures &

boundaries

gratings

diffractive,

lenses

Initial test source

Gene	erate Cross	Sectio	n			
Parame	ters of Fund	damenta	al Mode			
Туре			Laguerre	e Gaussian I	Mode	~
Referen	nce Wavele	ength (\	/acuum)		940 nm	~
Select	Achromatic	Paran	neter:			
() Wai	ist Radius ((1/e^2)		1.4484 µm		
Hal	If-Angle Di	vergen	ce	11.669°		
- (1/4	6 2)					
O Ray	leigh Leng	th		7.0131 µm		
○ Ray	leigh Leng	ith		7.0131 µm		
O Ray	/leigh Leng de Paramet nerent Accu	ers umulatio	on of Modes	7.0131 µm		1
O Ray Multimo Coh Maximu	de Paramet nerent Accu um Order	ers umulatio	on of Modes	7.0131 μm 0	x	 1
O Ray Multimo Coh Maximu	de Paramet nerent Accu um Order Radial Or	ers umulatio	on of Modes	7.0131 µm 0	x	 1
O Ray	de Paramet herent Accu um Order Radial Or	ers umulation 0	on of Modes	7.0131 µm 0 Active 5 万 5	x weight	1
○ Ray Multimor □ Coh Maximu	de Paramet herent Accu um Order Radial Or	rder A 0	on of Modes	7.0131 µm 0 Active 5 ☑ 5	x Weight 0	1
O Ray	de Paramet herent Accu um Order	rder A 0 0	on of Modes	0 Active 5 5	x weight	1
O Ray	de Paramet herent Accu um Order Radial O	rder A	on of Modes	0 Active 5 5	x veight	1

After parametric optimization

Polarization Mod	de Selection	Sampli	ng	Ray Selectio
Basic Parameters	Spectral P	arameters	Spati	al Parameter
Generate Cross Secti	ion			
Parameters of Fundamen	ntal Mode			
Туре	Lague	rre Gaussian	Mode	
Reference Wavelength	(Vacuum)		940 nm	
Select Achromatic Para	ameter:			
O Waist Radius (1/e^2	2)	2.1114 µm		
Half-Angle Diverge (1/e^2)	nce	8.0637°]	
○ Rayleigh Length		14.903 µm		
Rayleigh Length Multimode Parameters Coherent Accumulat	tion of Modes	14.903 µm]	
Rayleigh Length Multimode Parameters Coherent Accumulat Maximum Order	tion of Modes	14.903 μm 0) x [
Rayleigh Length Multimode Parameters Coherent Accumulat Maximum Order Radial Order	tion of Modes	14.903 µm 0 er Active	x	
Rayleigh Length Multimode Parameters Coherent Accumulat Maximum Order Radial Order 0	tion of Modes	14.903 µm 0 er Active 0	x weight	
Rayleigh Length Multimode Parameters Coherent Accumulat Maximum Order Radial Order 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tion of Modes	14.903 µm 0 ar Active 0 ✓ 5 1 ☑ 5	x [E
Rayleigh Length Multimode Parameters Coherent Accumulat Maximum Order Radial Order 0 0 0 0 0 0 0 0 0 0 0 0 0	tion of Modes	14.903 µm 0 er Active 0 ✓ 5 1 ✓ 5	x Weight 5.981 3.895	
Rayleigh Length Multimode Parameters Coherent Accumulat Maximum Order Radial Order 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tion of Modes	14.903 µm 0 er Active 1 ☑ 5	x Weight 5.981 3.895	
Rayleigh Length Multimode Parameters Coherent Accumulat Maximum Order Radial Order 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tion of Modes	14.903 µm 0 er Active 1 ☑ 5) x [Weight 5.981 3.895	

After parametric optimization

After parametric optimization

Source Modeling

Simulation with the On-Axis VCSEL Unit

Simulation with an Off-axis VCSEL Unit

Dot Projector Principle_02a/b/c ...

Simulation with Complete VCSEL Array

Optical Design Software and Services

