

4 February 2020, Photonics West 2020

Modeling of High Contrast Metasurfaces and Their Performance in General Optical System

Site Zhang¹, Christian Hellmann², and Frank Wyrowski³

¹ LightTrans International UG, Jena, Germany

²Wyrowski Photonics GmbH, Jena, Germany

³Applied Computational Optics Group, Friedrich Schiller University Jena, Germany

Teams

(since 2014)

photo from wikitravel

Optical Design Software and Services

Physical-Optics System Modeling

Physical-Optics System Modeling

Physical-Optics System Modeling

Connecting Optical Technologies / Maxwell Solvers

Connecting Optical Technologies / Maxwell Solvers

Problem:

Application of a single field solver, e.g. FEM or FDTD, to the entire system: **Unrealistic numerical effort**

Solution:

- Decomposition of system and application of regional field solvers.
- Interconnection of different solvers and so to solve the complete system.

VirtualLab Fusion – Diffractive Optics Applications

nonlinear free crystals & compon... space anisotropic prisms, plates, components cubes, ... waveguides & lenses & fibers freeforms Selection of apertures & VirtualLab Fusion scatterer Field boundaries applications for Solvers diffusers metasurfaces gratings diffractive, Fresnel, diffractive beam meta lenses splitters

SLM & adaptive

components

micro lens &

freeform arrays

HOE, CGH, DOE

General Design Procedure

Join our demo session tomorrow:

Date: Wednesday, 5 February 2020 | **13:30 – 14:45** Location: Moscone Center West, 2nd level, **Room 2009**

Blazed Meta-Grating Composed of Square Pillars

P. Lalanne, *et al.*, "Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings," Opt. Lett. 23, 1081-1083 (1998)

Fig. 2. Scanning-electron micrograph of the blazed binary subwavelength grating. The horizontal period (along the x axis) is 1.9 μ m, and the period in the perpendicular direction (y axis) is equal to the sampling period (380 nm). The maximum pillar aspect ratio is 4.6.

Building Block / Unit Cell Analysis

Building Block / Unit Cell Analysis

transmission amplitude/phase vs. pillar diameter (@633nm)

Distribution of Cells → Linear Phase

Distribution of Cells → Linear Phase

Performance Evaluation: Transmitted Phase Distribution

Performance Evaluation: Transmitted Phase Distribution

LightTrans International

Performance Evaluation: Diffraction Efficiency

grating performance evaluation

	Efficiency
TE-polarization	80.2%
TM-polarization	74.2%
Average	77.2%

Same average efficiency value reported in P. Lalanne, *et al.*, Opt. Lett. 23, 1081-1083 (1998)

Post-Optimization of Metagrating

downhill simplex optimization with FMM/RCWA for grating analysis

Post-Optimization: Initial vs. Optimized Structure

Design of Meta-Grating as Large-Angle Spot Projector

Design Task

Desired Phase Profile Design (IFTA)

Building Block / Unit Cell Analysis

Distribution of Cells

Performance Evaluation: Initial Design

Post-Optimization of Metagrating (PV Uniformity Error)

initial structure

- keep pillar positions
- varying pillar diameters
- 25 variables in total

downhill simplex optimization with FMM/RCWA for grating analysis

Post-Optimization of Metagrating (RMS Uniformity Error)

initial structure

- keep pillar positions
- varying pillar diameters
- 25 variables in total

downhill simplex optimization with FMM/RCWA for grating analysis

Cross-Platform Simulation and Optimization

Evaluation of Optimized Metasurface Design

Optical Design Software and Services

