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Physical-Optics System Modeling

# B-dS=0
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Homogeneous

Solve Maxwell's equations for given
source field and components.
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Physical-Optics System Modeling

~

equations with one field solver,

e.g. FEM, FMM, or FDTD, for
entire system not feasible

~_ because of numerical effort! /

3) LightTrans International



Connecting Optical Technologies / Maxwell Solvers

Field Solver
Prisms, ...

kB
Field Solver
Lenses, ...

Bl

Field Solver micro-
and nano-
structures
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Connecting Optical Technologies / Maxwell Solvers

Problem:
Application of a single field solver, e.g. crystals & components space  prisms,
FEM or FDTD, to the entire system: o Rl
Unrealistic numerical effort waveguides ' lenses &
& fibers ~ freeforms
scatterer Field Boundaries

beam Fresnel, meta

* Interconnection of different solvers splittors o
SLM & micro lens & HOE, CGH,
and so to solve the complete [Jdaptive Tfreeform  DOE
system. e

Solution: Solver
« Decomposition of system and diffusers ' ' gratings
application of regional field solvers. o o
diffractive diffractive,

8 LightTrans International



Connecting Optical Technologies / Maxwell Solvers

Problem:
Application of Sefitiaetaisanautintes T -
FEM or FD Plates,

apertures &
boundaries

Solution:
° Decomp U ’ gratings
appl ICatI . diffractive,

) Fresnel, meta
lenses

* |Interconne
T micr n HOE, CGH,
and so to solve the complete deptive frosform ~ DOE
system. e
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Example of Plate/Etalon

( Different lightpaths

Fig. 9.41 Phase shifts arising purely from the reflections (internal
K ( Sum of mutually
coherent fields per
Eo, = Eor — (Eotrt’ + Eotr®t’ + Egtr’t' + - . )

W Eo = Eor — Etrt'(1 + P2 + 1% +---), \ Ilghtpath J

at point P, is then




Example of Plate/Etalon

306 Interference
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Fig. 9.41 Phase shifts arising purely from the reflections (internal j 5 o
9; < G;). : el
0 I — F =200
- 0 2n 4n é

Fig. 9.45 Airy function.
at point P, is then
y ; S - density emerging from the film. It follows from Eqgs. (9.33)
Eo, = Eor — (Eotrt’ + Eotr’t’ + Egtr’t’ + ) and (9.34), that this is indeed the case, that is
or
ED'-EOI'—EOWU +rl+"+.__)' ’!=I,+". (9.35}




Connecting Field Solvers: Tilted Planar-Planar Surfaces

etalon configuration

planar-planar (tilted)
- center thickness 100um

Qltof)first surface 0.1°

nonlinear
crystals & components
anisotropic

components interface
waveguides curved
& fibers ~ interface
_ apertures &
scatterer Field

free
space
plane

boundaries

Solvers

beam
splitters

adaptive
components

diffusers '( \‘ gratings
diffractive diffractive,

Fresnel, meta
lenses

SLM &  icro lens & HOE, CGH,

freeform DOE
arrays




Connecting Field Solvers: Tilted Planar-Planar Surfaces

etalon configuration

planar-planar (tilted)
- center thickness 100um

Qltof)first surface 0.1°

(1)
(2)
(2)
\30°

nonlinear

crystals & compo
anisotropic
components

waveguides
& fibers .
scatterer -

beam
splitters

adaptive
components

diffusers '(
diffractive

free

nents SPace

O

Field
Solvers

freeform
arrays

\‘ gratings
diffractive,

plane
interface

@ curved

interface

apertures &
boundaries

Fresnel, meta
lenses

SLM &  icro lens & HOE, CGH,

DOE




Connecting Field Solvers: Tilted Planar-Planar Surfaces

etalon configuration

planar-planar (tilted)
- center thickness 100um

Qltof)first surface 0.1°

I3 12: Parallel Planar Surfaces == EeR (=

Chromatic Fields Set

parallel surfaces
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density emerging from the film. It follows from Eqs. (9.33)
and (9.34), Mmumm the case, that is

T ik (9.35)







Connecting Field Solvers: Tilted Planar-Planar Surfaces

etalon configuration

planar-planar (tilted)
- center thickness 100um

Qltof)first surface 0.1°

I 13: Tilted Planar Surfaces

Chromatic Fields Set

= o ==

1

¥ [mm]
05 00 04
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X [mm]

first surface tilt by 0.1°

1
D DIS
]
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prallel Planar Surfaces

Chromatic Fields Set

= o )

1

05 00 05

-1

Linear interference fringes
appear due to linear change
of etalon thickness.

parallel surfaces
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X [mm]
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Connecting Field Solvers

etalon configuration
cylindrical-planar

- center thickness 100 um
- cylindrical (x) surface
radius 1m

©
(1)
\30°

free
space

nonlinear
crystals & components
anisotropic

components @

plane
interface

9 A

waveguides
& fibers ~
tt ) apertures &
scatterer Field boundaries

Solvers

diffusers ( \ gratings
diffractive diffractive,
beam Fresnel, meta

splitters lenses
SLM&  icro lens & HOE, CGH,
adaptive  grooform DOE
components

arrays




Connecting Field Solvers: Cylindrical-Planar Surfaces

3 14: Input Field Polarized along ¥ =N =R
Chromatic Fields Set . .

_ . Polarization-dependent
etalon configuration input polarization along y effect on the interference is
cylindrical-planar considered in the simulation.
- center thickness 100um _

- cylindrical (x) surface I3 15: Input Field Polarized along X =N =0 ==
radlus 1m B et Chromatic Fields Set
E 0 o o
5 2 input polarization along X
-1 05 0 05 _ S
X [mm] E o
; L
= 05 0 05
X [mm]




Connecting Field Solvers: Spherical-Planar Surfaces

etalon configuration
spherical-planar

- center thickness 100um
- spherical (x&y) surface
radius 1m

& 16: Spherical - Planar Surface

Chromatic Fields Set

oo e |

¥ [mm]

05

]

-0.5

Data for Wavelength of 532 nm  [[V/m)*2]

1
D DIS
0

-1 05 0 05 1
X [mm]

Non-sequential field
tracing simulation of
etalons allows the
consideration of arbitrary
surface types.




Connecting Field Solvers: Spherical-Planar Surfaces

.

etalon configuration

spherical-planar
- center thickness 100 um
- spherical (x&y) surface

Non-sequential field
- tracing simulation of

X o etalons allows the

T_) consideration of arbitrary
‘ surface types.

) 30°




Lightguide Concept




Lightguide Concept: Fundamental Detectors

Eyebox}

« Radiance/illuminance (per pupil area) in
eyebox

« PSF/MTF over eye position in eyebox

* Photometry, radiometry, image
resolution, color, ... field tracing provides
high flexibility to apply customized
detector functions




Lightguide Concept: Modeling Task

Evaluate e.g. radiance, illuminance,
PSF/MTF including

Rigorous modeling of gratings
Polarization

Interference

Coherence




Typical Modeling Situation for AR&MR Lightguide

nonlinear free _
crystals & components SPace prisms,
anisotropic plates,
components cubes, ...

e Eye waveguides

Ata & fibers @ @ @ flrir:;gfms.:;

. ? ” 9 e apertures &
7 \ 0 7 N\ 7 \ 4 scatterer Field @ boundaries
\Yy \ /7 \ /7

/ Solvers
¢ v v v @
9 9 diffusers ( gratings
| Mmager diffractive diffractive,

beam Fresnel, meta

splitters lenses

SLM & | 1icro lens & HOE, CGH,

adaptive  gooform DOE
components arrays




Interference and coherence effects



Correlation between Modes in Modeling

 FOV mode (one image pixel) represents
electromagnetic field which consists of
— Fully coherent modes per wavelength: spectral modes

— Stationary sources: Spectral modes are mutually
uncorrelated

— Degree of polarization: Representation by two uncorrelated
modes per spectral mode
« Each spectral mode propagates through lightguide
and is split numerous times:
— Channel modes (beams in eyebox)
— Channel modes per spectral mode are mutually correlated!




Lightguide Modeling and Design

AR&VR in ( . . ) ( . : . } ( : . . )_ Optimization of
. . O System configuration > Lightguide modelin Lightguide design . . i )
VirtuallLab Fusion . - e - e - incoupling grating

! ! !

+
Light engine

i+

{ (Stack of) Lightguide(s)
|

Surface modulation function (SMF)

—

I+)

Detectors

recrs
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Lightguide Modeling and Design

AR&VR in . o\ { .. . . ) ( . . . Optimization of
. . System configuration Lightquide modelin Lightguide design 0 . . .
VirtualLab Fusion / < J L e E R I incoupling grating

Journal of the European Optical Society - Rapid Publications 3, o8oo4 (2008) WWW.jeos.org

Light engine

Any source model can be applied in
_lightguide modeling

Any degree of coherence
Jani Tervo Department of Physics and Mathematics, University of Joensuu, RO. Box 111, FI-80101 Joensuu, Fin-
. . Jjanitervo@joensuw.fi laad
Any degree of polarization an
Ismo A. Turunen Department of Physics and Mathematics, University of Joensuu, PO. Box 111, FI-80101 Joensuu, Fin-
. ‘ ‘ : " land
\ COnflngrﬂthn and mOdEImQ of Ilght ZLzli= Benfeng Bai Department of Physics and Mathematics, University of Joensuu, PO. Box 111, F1-80101 Joensuu, Fin-
land
(Stack of) Lightguide(s)
2004 J. Opt. Soc. Am. A/Vel. 27, No. 9/September 2010 Tervo et al.

. Surface modulation function (SMF)
4} Shifted-elementary-mode representation for
partially coherent vectorial fields

Detectors

. 1 . 1 . . 1 2
Jani Tervo, ™ Jari Turunen,' Pasi Vahimaa, and Frank Wyrowski

"University of Eastern Finland, Department of Physics and Mathematics, PO. Box 111, FI-80101 Joensuu, Finland

“Friedrich Schiller University of Jena, Department of Applied Physics, D-07745 Jena, Germany _
*Corresponding author: jani.tervo@joensuu.fi




Correlation between Modes in Modeling
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Levola Type Geometry of Eye Pupil Expansion (EPE)
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Levola Type Geometry of Eye Pupil Expansion (EPE)

Multiple Mini-Mach-Zehnder Systems

+«-+*

Outcoupling
Eyebox 2D Expansion
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Mini Mach-Zehnder Inferferometer Lightpaths: Channel Modes




Lightguide Setup & Evaluation of Outcoupled Light

n =
N £
>
Outcoupling ‘/
Eyebox
® © @ 0 <=
® 6 60 0 <=
® @ 0 0 -
® ©® © 0 -« 4 2 0 2 4
X [mm]

\ Exemplary
Outcoupled Light




Outcoupled Light Modes Passing Through Eye Pupil

Y [mm]

4 -2 0 2 4 -5 -1 05 0 O0p 1 1.5
X [mm] X [mm]
marginal area light passing thejeye pupil

of outcouling grating region

due to beams hitting the edge of
any grating region, the further each of these beam footprints

propagation varies for the different derives from multiple light modes
light portions; this causes these from different light paths
segmented beam footprints




Outcoupled Light Modes Passing Through Eye Pupil

Boundary effects h

should be included in
high resolution )

Y [mm]
-15 -1 -05 0 05 1 1.5

-5 -1 05 0 05 1 15

X [mm]

light passing the eye pupil




Outcoupled Light Modes Passing Through Eye Pupil

Boundary effects h

should be included in
high resolution )

Y [mm]
-15 -1 -05 0 05 1 1.5

-5 -1 05 0 05 1 15

X [mm]

light passing the eye pupil




Outcoupled Light Modes Passing Through Eye Pupil

Boundary effects h

should be included in
high resolution )

Y [mm]
-15 -1 -05 0 05 1 1.5

-5 -1 05 0 05 1 15

X [mm]

light passing the eye pupil




Outcoupled Light Modes Passing Through Eye Pupil

Y [mm]
-15 -1 -05 0 05 1 1.5

-5 -1 05 0 05 1 15

X [mm]

light passing the eye pupil

For one wavelength and one FOV the pupil is partly
filled with mutually correlated channel modes.




Outcoupled Light Modes Passing Through Eye Pupil

532nm (Coherent Sum) [1E-3 (V/m)~2]
9.89

For one wavelength and one FOV the pupil is partly
filled with mutually correlated channel modes.




Outcoupled Light Modes Passing Through Eye Pupil

532nm (Incoherent Sum) [1E-2 (V/m)/"2] \

Assumption of
uncorrelated modes
leads to wrong result!

X [mm]

For one wavelength and one FOV the pupil is partly
filled with mutually correlated channel modes.




Light Modes Passing Through Eye Pupil: Single Spectral Mode

532nm (Coherent Sum) [1E-3 (V/m)~2]
9.89

For one wavelength and one FOV the pupil is partly
filled with mutually correlated channel modes.




Light Modes Passing Through Eye Pupil: 1nm Bandwidth

532nm (Coherent Sum) [1E-3 (V/m)~2] 532nm (Part.Coh.Sum ~600fs) [1E-3 (V/m)"2] 532nm (Incoherent Sum) [1E-2 (V/m)/"2]
9.89

[ Coherent J [Partially Coherent} [ Incoherent J

Pupil is partly filled with mutually correlated channel
modes per uncorrelated spectral modes.




Light Modes Passing Through Eye Pupil

...of a ...of a ...of an
laser diode (~1nm) VCSEL (~20nm) LED (~40nm)

Pupil is partly filled with mutually correlated channel
modes per uncorrelated spectral modes.

-/

e ]




Light Modes Passing Through Eye Pupil

B~ =0==00

...ofa
laser diode (~1nm)

‘ FOV mode J

|

i

VCSEL (~20nm)

Channel mode 1
——

Uncorrelated

Channel mode 1
R ——————

.....

Cha | mode m

.....

Cha | mode M

Uncorrelated

| | |
CSpectraI mode 1 ) ( ...... j CSpectraI mode j ) ( ...... ) (Spectral mode J )
I | |

Channel mode 1
~_

N——
Ch | mode m
.....
Channel mode M

...of a ...of an
LED (~40nm)

mutually correlated channel
lated spectral modes.

e ]




Polarization effects



Grating Design for FOV Angle (5°, 3°) — Polarization Evaluation

\

Linearly
polarized in x-
\direction

e




Grating Design for FOV Angle (5°, 3°) — Polarization Evaluation

Incident light at grating interaction
(uniform polarization)
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325 pm
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Incident light at grating interaction

Grating Design for FOV Angle (5°, 3°) — Polarization Evaluation
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igh for FOV Angle (5°, 3°) — Polarization Evaluation

Des

ing

Grat

Incident light at grating interaction

(non-uniform polarization)
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Grating Design for FOV Angle (5°, 3°) — Polarization Evaluation

Incident light at grating interaction

(non-uniform polarization)
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Grating Design for FOV Angle (5°, 3°) — Polarization Evaluation
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(non-uniform polarization)

525 pm

-325 pm




PSF and MTF evaluation



Light Modes Passing Through Eye Pupil

...of a ...of a ...of an
laser diode (~1nm) VCSEL (~20nm) LED (~40nm)

Pupil is partly filled with mutually correlated channel
modes per uncorrelated spectral modes.

-/




Results: Full Pupil lllumination

Y [mm]
0

-2 -1 0 1 2

X [mm]

behind eye pupil

Ideal Eye Model
- pupil diameter = 4mm
- ideal lens with focal length = 17mm




Results: Full Pupil lllumination

PSF @ retina

m

Y [mm]
0
Y [um]
Line Density Y [1E2 cycles/mm]
0

-2 -1 0 1 2 =0 100 10 20 4 2 0 2 4
X [mm] X ] Line Density X [1E2 cycles/mm]
behind eye pupil *
. 1D MTF along 0°
Ideal Eye Model -
- pupil diameter = 4mm ]
- ideal lens with focal length = 17mm S
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Line Density X [1E2 cycles/mm]




Results: FoV = (0°; 0°), Monochromatic 532nm
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Results: FoV = (0°; 0°), Spectrum 1nm Bandwidth (24samples)
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Results: FoV = (0°; 0°), Spectrum 10nm Bandwidth (100samples)
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Light Modes Passing Through Eye Pupil

...ofa ...ofa ...of an
laser diode (~1nm) VCSEL (~20nm) LED (~40nm)

For one wavelength and one FOV the pupil is partly
filled with mutually correlated channel modes.

-/




Diffraction in Lightguide



Typical Modeling Situation for AR&MR Lightguide
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Typical Modeling Situation for AR&MR Lightguide
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Typical Modeling Situation for AR&MR Lightguide
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Cascaded Diffraction in Lightguide Modeling: Layout

Lightguide: Front View Lightguide: Top View

n & Q$D:l
— | m

Grating regions: variation of
diffraction efficiency per segment

[’[ Ray tracing illustration ]

F*<

4 mm
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Cascaded Diffraction in Lightguide Modeling: Layout
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Lightguide Modeling: Suppressed Diffraction Effects (Homeomorphic)

Intensity (homeomorphic model)

I 5: Camera Detector 600 after Light Guide #1 (R) (Field Tracing 2nd Generation) oS
Chromatic Fields Set

Lightguide: Front View

Data for Wavelength of 532 nm

¥ [mm]




Lightguide Modeling: Suppressed Diffraction Effects (Homeomorphic)

Intensity (homeomorphic model)
I 5: Camera Detector £600 after Light Guide #1 (R) (Field Tracing 2nd Generation) =N =R

Chromatic Fields Set

Lightguide: Front View

Data for Wavelength of 532 nm
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Lightguide Modeling: Diffraction Effects Included

Lightguide: Front View

Intensity (homeomorphic model)

u 5: Camera Detector #8600 after Light Guide #1 (R) (Field Tracing 2nd Generation) E\@

Chromatic Fields Set

Data for Wavelength of 5332 nm
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Lightguide Modeling: Diffraction Effects Included

Lightguide: Front View Intensity

I 3: Camera Detector 600 after Light Guide #1 (R) (Field Tracing 2nd Generation) ][]
Chromatic Fields Set

Data for Wavelength of 5332 nm
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Conclusion

« Connecting field solvers enables practical and fast
physical-optics modeling of lightguides for AR&VR.

* VirtualLab Fusion provides all demanded modeling
techniques on one single platform
— Ray tracing
— Physical-optics modeling

* Dependent on the lightguide architecture and the light
engine, interference, coherence, polarization, and
diffraction effects can be important and are fully
iIncluded in modeling.

Steady R&D in lightguide modeling and
design.
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Energy conservation per spectral mode

Ultimate test: Evaluation of overall flux through all surfaces
of waveguide must provide efficiency close to 100%



Modeling Task:

In- and Outcoupling

Edit Waveguide

Sclid  Suface Layouts

# |Position

| Orientation

1 (0m; 0m; 0 m)
2 (0m; 0m; 1 mm)

(0 0% 079

(0% 0% 07)

Plane Interface

by FMM!

Grating regions:
Rigorous modeling

Slanted grating profile ]

\

| Subsequent Medium

Com

Plane Conical Cylindrical Aspherical Paolynomial Sampled  Programmable
| [ (e
[COK | Comced || Heb |

Coated Slanted Grating Enter your commen
Air in Homogeneous M Enter yvour commen

>

Validity: @ Add || Inset || Delete |
Period
Stack Periodis  Dependent from the Period of Medium v | with Index
Stack Period 45324 rm
-Tmlsﬁ, OK | Cancel || Help |




Result by 3D Ray Tracing (Working Orders)

Ray tracing illustration
of desired lightpath.
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Result by 3D Ray Tracing (All Orders)

Ray tracing illustration
iIncluding all lightpaths
caused by higher
grating orders.
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Rigorous Overall Efficiency Evaluation

* Physical-optics analysis of all lightpaths.
« Combination including polarization and coherence!

Detector . Calculated Efficiency .
Transmission @ Incoupling 0.416%
Reflection @ Incoupling 11.997%
Side Wall #1 1.194%
Side Wall #2 6.778%
Reflection @ Outcoupling 77.983%
Transmission @ Outcoupling 1.546%
Total 99.915%

F and MTT evabusdan




Tabelle1

		Detector		Calculated Efficiency

		Transmission @ Incoupling		0.416%

		Reflection @ Incoupling		11.997%

		Side Wall #1		1.194%

		Side Wall #2		6.778%

		Reflection @ Outcoupling		77.983%

		Transmission @ Outcoupling		1.546%

		Total		99.915%
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