

SPIE AR VR MR 2020, San Francisco, February 2020

Physical-optics analysis of lightguides for augmented and mixed reality glasses (11310-38)

S. Steiner¹, S. Zhang¹, C. Hellmann², and F. Wyrowski³ ¹LightTrans International, ²Wyrowski Photonics, ³University Jena (Germany)

Teams

(since 2014)

photo from wikitravel

Optical Design Software and Services

Physical-Optics System Modeling

Physical-Optics System Modeling

Connecting Optical Technologies / Maxwell Solvers

Connecting Optical Technologies / Maxwell Solvers

Problem:

Application of a single field solver, e.g. FEM or FDTD, to the entire system: **Unrealistic numerical effort**

Solution:

- Decomposition of system and application of regional field solvers.
- Interconnection of different solvers and so to solve the complete system.

Connecting Optical Technologies / Maxwell Solvers

Problem:

Example of Plate/Etalon

Example of Plate/Etalon

Connecting Field Solvers

Connecting Field Solvers: Cylindrical-Planar Surfaces

Connecting Field Solvers: Spherical-Planar Surfaces

Non-sequential field tracing simulation of etalons allows the consideration of arbitrary surface types.

Connecting Field Solvers: Spherical-Planar Surfaces

Lightguide Concept

Lightguide Concept: Fundamental Detectors

Lightguide Concept: Modeling Task

Evaluate e.g. radiance, illuminance, PSF/MTF including

- Rigorous modeling of gratings
- Polarization
- Interference
- Coherence

Typical Modeling Situation for AR&MR Lightguide

Interference and coherence effects

Correlation between Modes in Modeling

- FOV mode (one image pixel) represents electromagnetic field which consists of
 - Fully coherent modes per wavelength: spectral modes
 - Stationary sources: Spectral modes are mutually uncorrelated
 - Degree of polarization: Representation by two uncorrelated modes per spectral mode
- Each spectral mode propagates through lightguide and is split numerous times:
 - Channel modes (beams in eyebox)
 - Channel modes per spectral mode are mutually correlated!

Lightguide Modeling and Design

Lightguide Modeling and Design

*Corresponding author: jani.tervo@joensuu.fi

Correlation between Modes in Modeling

Levola Type Geometry of Eye Pupil Expansion (EPE)

Levola Type Geometry of Eye Pupil Expansion (EPE)

Mini Mach-Zehnder Inferferometer Lightpaths: Channel Modes

Lightguide Setup & Evaluation of Outcoupled Light

light passing the eye pupil

light passing the eye pupil

light passing the eye pupil

For one wavelength and one FOV the pupil is partly filled with mutually correlated channel modes.
Outcoupled Light Modes Passing Through Eye Pupil

Outcoupled Light Modes Passing Through Eye Pupil

Light Modes Passing Through Eye Pupil: Single Spectral Mode

Light Modes Passing Through Eye Pupil: 1nm Bandwidth

Pupil is partly filled with mutually correlated channel modes per uncorrelated spectral modes.

Light Modes Passing Through Eye Pupil

Pupil is partly filled with mutually correlated channel modes per uncorrelated spectral modes.

Polarization effect

Light Modes Passing Through Eye Pupil

Polarization effects

PSF and MTF evaluation

Light Modes Passing Through Eye Pupil

Pupil is partly filled with mutually correlated channel modes per uncorrelated spectral modes.

Results: Full Pupil Illumination

Ideal Eye Model

- pupil diameter = 4 mm
- ideal lens with focal length = 17 mm

Results: Full Pupil Illumination

Ideal Eye Model

- pupil diameter = 4 mm
- ideal lens with focal length = 17 mm

Results: FoV = (0°; 0°), Monochromatic 532nm

Results: FoV = (0°; 0°), **Spectrum 1nm Bandwidth (24samples)**

Results: FoV = (0°; 0°), **Spectrum 10nm Bandwidth (100samples)**

Light Modes Passing Through Eye Pupil

Diffraction in Lightguide

Typical Modeling Situation for AR&MR Lightguide

Typical Modeling Situation for AR&MR Lightguide

Typical Modeling Situation for AR&MR Lightguide

Cascaded Diffraction in Lightguide Modeling: Layout

Cascaded Diffraction in Lightguide Modeling: Layout

Lightguide Modeling: Suppressed Diffraction Effects (Homeomorphic)

Lightguide Modeling: Suppressed Diffraction Effects (Homeomorphic)

Lightguide Modeling: Diffraction Effects Included

Lightguide Modeling: Diffraction Effects Included

Conclusion

- Connecting field solvers enables practical and fast physical-optics modeling of lightguides for AR&VR.
- VirtualLab Fusion provides all demanded modeling techniques on one single platform
 - Ray tracing
 - Physical-optics modeling
- Dependent on the lightguide architecture and the light engine, interference, coherence, polarization, and diffraction effects can be important and are fully included in modeling.

Steady R&D in lightguide modeling and design.

Thank You!

Energy conservation per spectral mode

Ultimate test: Evaluation of overall flux through all surfaces of waveguide must provide efficiency close to 100%

Modeling Task: In- and Outcoupling

Result by 3D Ray Tracing (Working Orders)

Result by 3D Ray Tracing (All Orders)

Rigorous Overall Efficiency Evaluation

- Physical-optics analysis of all lightpaths.
- Combination including polarization and coherence!

Detector	Calculated Efficiency
Transmission @ Incoupling	0.416%
Reflection @ Incoupling	11.997%
Side Wall #1	1.194%
Side Wall #2	6.778%
Reflection @ Outcoupling	77.983%
Transmission @ Outcoupling	1.546%
Total	99.915%

PSF and MTF evaluation