

SPIE AR VR MR 2020, San Francisco, February 2020

Innovative systematic design approach for lightguide devices for AR & MR-applications (11310-16)

S. Steiner¹, S. Zhang¹, C. Hellmann², and F. Wyrowski³ ¹LightTrans International, ²Wyrowski Photonics, ³University Jena (Germany)

Teams

(since 2014)

photo from wikitravel

Optical Design Software and Services

Physical-Optics System Modeling

Physical-Optics System Modeling

Physical-Optics System Modeling

Connecting Optical Technologies / Maxwell Solvers

Connecting Optical Technologies / Maxwell Solvers

Problem:

Application of a single field solver, e.g. FEM or FDTD, to the entire system: **Unrealistic numerical effort**

Solution:

- Decomposition of system and application of regional field solvers.
- Interconnection of different solvers and so to solve the complete system.

Connecting Optical Technologies / Maxwell Solvers

Problem:

Design demands & constraints: e.g.

- Constraints of lateral layout & dimensions
- Desired optical parameters (e.g. FoV, wavelength)
- Desired optical performance (efficiency & uniformity)
- Type of gratings and range of parameters

Selection of design criteria?

Lightguide Concept: In/Out Coupling

Lightguide Concept: Exit Pupil Expansion

Lightguide Concept: Exit Pupil Expansion

Which one is more critical and should be prioritized?

Source

- Uniformity of radiance/illuminance (per pupil area) in eyebox per FOV angle/mode dependent of pupil position in eyebox.
- Uniformity of radiance/illuminance per pupil position dependent of FOV angles.

Lightguide Concept: Modeling Task

Calculate radiance/illuminance per FOV mode including

- Rigorous modeling of gratings
- Polarization
- Interference
- Coherence

Parametric Optimization of Lightguide Parameters

Parametric optimization

Parametric Optimization by VirtualLab & External Tools

Provides full flexibility by a powerful combination of tools to find the best solution for your lightguide architecture

Parametric Optimization and Initial Design

Eyebox Uniformity vs. Beam Density

Eyebox Uniformity vs. Beam Density

- Per eye position (x, y) in eyebox the flux into the eye per FOV angle (θ_x, θ_y) is calculated, which represents the radiance L_e .
- The uniformity error $\Omega(\theta_x, \theta_y)$ is defined as the contrast of L_e :

$$\Omega(\theta_x, \theta_y) = \frac{\max_{(x,y)} L_e(\theta_x, \theta_y; x, y) - \min_{(x,y)} L_e(\theta_x, \theta_y; x, y)}{\max_{(x,y)} L_e(\theta_x, \theta_y; x, y) + \min_{(x,y)} L_e(\theta_x, \theta_y; x, y)}$$

Initial investigation:

- Assume ideal gratings which provide perfectly uniform beams.
- Concentrate on beam density vs.
 - \circ Thickness of lightguide
 - Beam size (light engine)
 - Off-axis angle incoupling

Irradiance in eyebox: FOV $(0^\circ, 0^\circ)$

Irradiance in eyebox: FOV $(0^\circ, 0^\circ)$

Irradiance in eyebox: FOV (0°, 0°)

Radiance FOV (0°, 0°) **Uniformity: 10.5%**

Eyebox Uniformity vs. Beam Density: Single Wavelength

Eyebox Uniformity vs. Beam Density: Single Wavelength

Eyebox Uniformity vs. Beam Density: Bandwidth 1nm

Eyebox Uniformity vs. Beam Density: Bandwidth 10nm

Eyebox Uniformity vs. Beam Density: Bandwidth 10nm

Uniformity vs. Beam Density – Comparison Bandwidths

Uniformity vs. Beam Density: Comparison Different FOVs

Lightguide Modeling and Design: Grating Optimization

Lightguide Modeling and Design: Grating Optimization

Grating Design for FOV Angle (0°, 0°)

Grating Design per FOV Angle: Flux Control

$$\begin{pmatrix} E_{x,\text{out}} \\ E_{y,\text{out}} \end{pmatrix}_{k_{\text{out},m}} = \begin{bmatrix} R_{\chi\chi} & R_{y\chi} \\ R_{\chiy} & R_{yy} \end{bmatrix} \cdot \begin{pmatrix} E_{x,\text{arb,in}} \\ E_{y,\text{arb,in}} \end{pmatrix}_{k_{\text{in}}}$$

- Storage of Rayleigh matrices in lookup table.
- Can be applied to arbitrary polarization for optimizing grating parameters.

Lightguide Modeling and Design: Grating Optimization

Grating Design for FOV Angle (0°, 0°)

Merit Function	Value
FOV Angle	$lpha=0^\circ$; $eta=0^\circ$
Uniformity Error	0.34%

Optimized Grating Parameter EPE Grating

Optimized Fill Factors

Optimized Modulation Depth

Optimized Grating Parameter Outcoupling Grating

Optimized Fill Factors

Optimized Modulation Depth

Grating Design for FOV Angle (5°, 3°)

Merit Function	Value
FOV Angle	$\alpha = 5^{\circ}; \beta = 3^{\circ}$
Uniformity Error	0.61%

Optimized Grating Parameter EPE Grating

Optimized Fill Factors

Optimized Modulation Depth

Optimized Grating Parameter Outcoupling Grating

Optimized Fill Factors

Optimized Modulation Depth

EPE Grating Design for Different FOV: Height

Lightguide Modeling and Design: Grating Optimization

Lightguide Modeling and Design: Grating Optimization

Combination of Different FOV Designs

Voronoi Segmentation

٠

Optimized Grating Parameter EPE Grating

Optimized Fill Factors

Optimized Modulation Depth

Optimized Grating Parameter Outcoupling Grating

Optimized Fill Factors

Optimized Modulation Depth

Final Design Results Mode #1 + #2

mouc	Merrer anotion	Value
#2	FOV Angle	$\alpha = 5^{\circ}; \beta = 3^{\circ}$
	Uniformity Error	45.61%

Parametric Optimization and Initial Design

Lightguide Modeling and Design

Lightguide Modeling and Design

Conclusion

- Physical-optics modeling of lightguides enables the consideration of all effects that have to be taken into account during the design development
- Parametric optimization can be done but is often slow due to lack of good initial solution and numerous parameters of the system
- VirtualLab allows for new systematic design concepts for lightguide devices, which provide a strategy to obtain appropriate initial system configurations
- The combination of physical-optical modeling, systematic design and parametric optimization will provide the optimal system design

Thank You!

Lightguide Modeling and Design

Lens source: A_019 and C_001 in Zebase

Design for Multiple FOV Modes: Waveguide

Design for Multiple FOV Modes: Waveguide

Parametric Optimization and Initial Design

