Friedrich-Schiller-Universität Jena

EOS Jena 2019

Connection of Field Solvers: Lenses and Microstructures

Rui Shi^{1,2}, Christian Hellmann^{2,3}, and Frank Wyrowski¹
1 Applied Computational Optics Group, Friedrich Schiller University Jena, Jena, Germany,
2 LightTrans International UG, Jena, Germany,
3 Wyrowski Photonics UG, Jena, Germany,

Background: Systems Containing Lenses and Microstructures

Motivation: Connection of Field Solvers

- Ray tracing is limited, because diffraction, polarization, coherence is not included.
- > Vectorial physical-optics modeling is desired, but FEM, FMM, FDTD etc. are slow.
- An efficient and accurate physical-optics modeling with fully vectorial effects is desired.
- Therefore, connection of the field solvers, e.g. lenses and microstructures, is one desired option to model the system efficiently and accurately, with fully vectorial effect.

Task: Ultraviolet (UV) Microscopy for Inspection of Wafer Structure

Task: Ultraviolet (UV) Microscopy for Inspection of Wafer Structure

x

Task: Ultraviolet (UV) Microscopy for Inspection of Wafer Structure

 $x \xrightarrow{x} \xrightarrow{z} z$

Fully Vectorial Modeling in the Framework of Field Tracing

Talk 22: Z. Wang et.al

B Operator for Lens by LPIA

R. Shi, C. Hellmann, and F. Wyrowski, J. Opt. Soc. Am. A 36, (2019).

2^{out}

 ϵ_{II}

 $\oint_{\hat{z}} \hat{x}$

B Operator for Lens by LPIA: Validation on Curved Surface

Results by FEM via JCMSuite

R. Shi, C. Hellmann, and F. Wyrowski, J. Opt. Soc. Am. A **36**, (2019).

B Operator for Lens by LPIA: Validation on Plane

Results by FEM via JCMSuite

 $= \mathcal{P}^{\text{out}} \mathcal{B}^{\text{LPIA}} \mathcal{P}^{\text{in}}$

 $\mathcal{B}^{(1)}$

Time of LPIA+FSP: <1 s Time of FEM: ~20 mins

R. Shi, C. Hellmann, and F. Wyrowski, J. Opt. Soc. Am. A 36, (2019).

B Operator for Microstructure by FMM

Simulation Results via VirtualLab Fusion

Near and Far Field Images for TE and TM

Near Field for Different Polarizations, without Evanescent Waves

Far Field for Different Polarizations

Comparison of Near and Far Field Images

Comparison of the Near Field and Far Field Image

Far Field Image Sensitivity of Defects

Far Field Image Sensitivity V.S Defect of Height of PMMA

 The far field image profile has obvious change when the height of PMMA changes from ±20 nm.

Far Field Image Sensitivity V.S Defect of Width of Gold Ridge

• The far field image profile changes but not so obviously, when the width of the gold ridge changes by +40 nm.

Summary and Conclusion

- We connect the field solvers of lenses and microstructures in the framework of field tracing;
- We apply it to the UV microscopy of inspection of wafer structure.
- We find that,
 - the near and far field images for different polarized illuminations are different.
 - the far field image is not the directly magnified near field image in the TM case.
 - the far field image is more sensitive to the height of the PMMA compared to the width of the gold ridge.

Appendix Near Field with Evanescent Waves

Validation of LPIA

R. Shi, C. Hellmann, and F. Wyrowski, J. Opt. Soc. Am. A 36, (2019).

Validation of LPIA

R. Shi, C. Hellmann, and F. Wyrowski, J. Opt. Soc. Am. A 36, (2019).

Near Field for Different Polarization with Evanescent Waves

